Age of Information Optimization in UAV-enabled Intelligent Transportation System via Deep Reinforcement Learning

Xinmin Li, Jiahui Li, B. Yin, Jiaxin Yan, Yuan Fang
{"title":"Age of Information Optimization in UAV-enabled Intelligent Transportation System via Deep Reinforcement Learning","authors":"Xinmin Li, Jiahui Li, B. Yin, Jiaxin Yan, Yuan Fang","doi":"10.1109/VTC2022-Fall57202.2022.10012697","DOIUrl":null,"url":null,"abstract":"In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的无人机智能交通系统信息优化时代
在这项工作中,我们研究了一个上行无人驾驶飞行器(uav)智能交通系统,以收集特定高速公路上行驶车辆的数据。为了保证行驶车辆向无人机基站传递信息的新鲜度,采用新信息时代(AoI)度量来表征信息的新鲜度,并通过联合优化无人机的飞行轨迹和车辆的通信时间来制定AoI最小化问题。为了处理混合整数非线性问题,提出了一种多智能体深度强化学习方案,采用独立的飞行方向和时隙动作空间,使每架无人机作为独立的智能体,根据存储的经验快速适应动态环境。提出了与aoi相关的奖励函数来选择有益的动作空间,保证信息的新鲜度。数值仿真结果表明,该方案优于基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1