{"title":"Code Generation of Graph-Based Vision Processing for Multiple CUDA Cores SoC Jetson TX","authors":"Elishai Ezra Tsur, Elyassaf Madar, Natan Danan","doi":"10.1109/MCSoC2018.2018.00013","DOIUrl":null,"url":null,"abstract":"Embedded vision processing is currently ingrained into many aspects of modern life, from computer-aided surgeries to navigation of unmanned aerial vehicles. Vision processing can be described using coarse-grained data flow graphs, which were standardized by OpenVX to enable both system and kernel level optimization via separation of concerns. Notably, graph-based specification provides a gateway to a code generation engine, which can produce an optimized, hardware-specific code for deployment. Here we provide an algorithm and JAVA-MVC-based implementation of automated code generation engine for OpenVX-based vision applications, tailored to NVIDIA multiple CUDA Cores SoC Jetson TX. Our algorithm pre-processes the graph, translates it into an ordered layer-oriented data model, and produces C code, which is optimized for the Jetson TX1 and comprised of error checking and iterative execution for real time vision processing.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Embedded vision processing is currently ingrained into many aspects of modern life, from computer-aided surgeries to navigation of unmanned aerial vehicles. Vision processing can be described using coarse-grained data flow graphs, which were standardized by OpenVX to enable both system and kernel level optimization via separation of concerns. Notably, graph-based specification provides a gateway to a code generation engine, which can produce an optimized, hardware-specific code for deployment. Here we provide an algorithm and JAVA-MVC-based implementation of automated code generation engine for OpenVX-based vision applications, tailored to NVIDIA multiple CUDA Cores SoC Jetson TX. Our algorithm pre-processes the graph, translates it into an ordered layer-oriented data model, and produces C code, which is optimized for the Jetson TX1 and comprised of error checking and iterative execution for real time vision processing.