Adaptive template method for speech recognition

Y. Liu, Y. Lee, H. Chen, G. Sun
{"title":"Adaptive template method for speech recognition","authors":"Y. Liu, Y. Lee, H. Chen, G. Sun","doi":"10.1109/NNSP.1992.253703","DOIUrl":null,"url":null,"abstract":"An adaptive template method for pattern recognition is proposed. The template adaptation algorithm is derived based on minimizing the classification error of the classifier. The authors have applied this method to a multispeaker English E-set recognition experiment and achieved a 90.38% average recognition rate with only one template for each letter. This indicates that the derived templates are able to capture the speaker-invariant features of speech signals.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An adaptive template method for pattern recognition is proposed. The template adaptation algorithm is derived based on minimizing the classification error of the classifier. The authors have applied this method to a multispeaker English E-set recognition experiment and achieved a 90.38% average recognition rate with only one template for each letter. This indicates that the derived templates are able to capture the speaker-invariant features of speech signals.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音识别的自适应模板方法
提出了一种模式识别的自适应模板方法。基于最小化分类器的分类误差,推导出模板自适应算法。将该方法应用于多语英语e集识别实验,在每个字母只有一个模板的情况下,平均识别率达到90.38%。这表明导出的模板能够捕获语音信号的说话人不变性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1