Heterogeneous Graph Convolutional Network for Visual Reinforcement Learning of Action Detection

Liangliang Wang, Chengxi Huang, Xinwei Chen
{"title":"Heterogeneous Graph Convolutional Network for Visual Reinforcement Learning of Action Detection","authors":"Liangliang Wang, Chengxi Huang, Xinwei Chen","doi":"10.1109/CACRE58689.2023.10208414","DOIUrl":null,"url":null,"abstract":"Existing action detection approaches do not take spatio-temporal structural relationships of action clips into account, which leads to a low applicability in real-world scenarios and can benefit detecting if exploited. To this end, this paper proposes to formulate the action detection problem as a reinforcement learning process which is rewarded by observing both the clip sampling and classification results via adjusting the detection schemes. In particular, our framework consists of a heterogeneous graph convolutional network to represent the spatio-temporal features capturing the inherent relation, a policy network which determines the probabilities of a predefined action sampling spaces, and a classification network for action clip recognition. We accomplish the network joint learning by considering the temporal intersection over union and Euclidean distance between detected clips and ground-truth. Experiments on ActivityNet v1.3 and THUMOS14 demonstrate our method.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing action detection approaches do not take spatio-temporal structural relationships of action clips into account, which leads to a low applicability in real-world scenarios and can benefit detecting if exploited. To this end, this paper proposes to formulate the action detection problem as a reinforcement learning process which is rewarded by observing both the clip sampling and classification results via adjusting the detection schemes. In particular, our framework consists of a heterogeneous graph convolutional network to represent the spatio-temporal features capturing the inherent relation, a policy network which determines the probabilities of a predefined action sampling spaces, and a classification network for action clip recognition. We accomplish the network joint learning by considering the temporal intersection over union and Euclidean distance between detected clips and ground-truth. Experiments on ActivityNet v1.3 and THUMOS14 demonstrate our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动作检测视觉强化学习的异构图卷积网络
现有的动作检测方法没有考虑动作片段的时空结构关系,导致在现实场景中的适用性较低,如果加以利用则有利于检测。为此,本文提出将动作检测问题表述为一个强化学习过程,通过调整检测方案观察片段采样和分类结果来获得奖励。特别是,我们的框架包括一个异构图卷积网络,用于表示捕获固有关系的时空特征,一个策略网络,用于确定预定义动作采样空间的概率,以及一个用于动作片段识别的分类网络。我们通过考虑检测片段与ground-truth之间的时间交和欧几里得距离来完成网络联合学习。在ActivityNet v1.3和THUMOS14上的实验验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continual Contrastive Anomaly Detection under Natural Data Distribution Shifts Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions An Integrated Calibration Scheme for Attitude Benchmark of Micro-nano Satellites and Its Experiments Based on In-Orbit Data Developing an Untethered Soft Robot for Finger Rehabilitation 3D Scanning Vision System Design and Implementation in Large Shipbuilding Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1