C. Stallo, M. Lucente, T. Rossi, E. Cianca, M. Ruggieri, A. Paraboni, C. Cornacchini, A. Vernucci, M. T. Nocerino, A. Ceccarelli, L. Bruca, G. Codispoti, M. De Sanctis
{"title":"TRANSPONDERS: Research and analysis for the development of telecommunication payloads in Q/v bands","authors":"C. Stallo, M. Lucente, T. Rossi, E. Cianca, M. Ruggieri, A. Paraboni, C. Cornacchini, A. Vernucci, M. T. Nocerino, A. Ceccarelli, L. Bruca, G. Codispoti, M. De Sanctis","doi":"10.1109/AERO.2009.4839341","DOIUrl":null,"url":null,"abstract":"Since the 70s Italy has had a pioneering approach to higher frequencies, at first at Ka band (20/30 GHz) with the Sirio experience (launched in 1978), when such a range was still a frontier, and then with Italsat F1 and F2 experiments in the 90s [1], studying Q and V bands in addition to Ka one as well. After those experiences, Italy through the Italian Space Agency (ASI) was one of the first European countries that have made an effort toward the exploitation of Q/V band in telecommunications. In 2004 ASI funded a feasibility study (phase A), called TRANSPONDERS, Italian acronym for “research, analysis and study of Q/V payloads for telecommunications”, aimed at studying and designing a payload to be used to fully characterize the channel at Q/V bands and to test novel adaptive interference/fading mitigation techniques such as ACM (Adaptive Coding and Modulation). Finally, the feasibility and performance of preliminary broadband services in such frequencies can be verified through this study .A new phase has recently started (April 2008), called TRANSPONDERS-2 and leaded by Space Engineering S.p.A., to continue the achievements gained during the first phase. In this scenario, it is mandatory to identify pre-operative experimental missions aiming at fully verifying the feasibility of future Q/V bands satellite telecommunication applications. The experimental goals are mainly to test the effectiveness of Propagation Impairment Mitigation Techniques (PIMTs) [2] in such frequency bands and the minimization of implementation risks for operative system characterized by a series of technological challenges.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Since the 70s Italy has had a pioneering approach to higher frequencies, at first at Ka band (20/30 GHz) with the Sirio experience (launched in 1978), when such a range was still a frontier, and then with Italsat F1 and F2 experiments in the 90s [1], studying Q and V bands in addition to Ka one as well. After those experiences, Italy through the Italian Space Agency (ASI) was one of the first European countries that have made an effort toward the exploitation of Q/V band in telecommunications. In 2004 ASI funded a feasibility study (phase A), called TRANSPONDERS, Italian acronym for “research, analysis and study of Q/V payloads for telecommunications”, aimed at studying and designing a payload to be used to fully characterize the channel at Q/V bands and to test novel adaptive interference/fading mitigation techniques such as ACM (Adaptive Coding and Modulation). Finally, the feasibility and performance of preliminary broadband services in such frequencies can be verified through this study .A new phase has recently started (April 2008), called TRANSPONDERS-2 and leaded by Space Engineering S.p.A., to continue the achievements gained during the first phase. In this scenario, it is mandatory to identify pre-operative experimental missions aiming at fully verifying the feasibility of future Q/V bands satellite telecommunication applications. The experimental goals are mainly to test the effectiveness of Propagation Impairment Mitigation Techniques (PIMTs) [2] in such frequency bands and the minimization of implementation risks for operative system characterized by a series of technological challenges.