Experimental HIl implementation of RNN for detecting cyber physical attacks in AC microgrids

B. Canaan, B. Colicchio, D. Abdeslam
{"title":"Experimental HIl implementation of RNN for detecting cyber physical attacks in AC microgrids","authors":"B. Canaan, B. Colicchio, D. Abdeslam","doi":"10.1109/speedam53979.2022.9842003","DOIUrl":null,"url":null,"abstract":"In this paper, a real-time cyber intrusion detection mechanism based on recurrent neural networks is implemented for detecting cyber-physical attacks targeting AC microgrids (MG). An AutoRegressive eXogenous Neural Network (NARX) model is deployed as an Intelligent Detection System (IDS), to detect cyber-physical anomalies in the behavior of exchanged active power in a connected AC microgrid. Results are validated through a Hardware-in The loop simulation using the Opal RT real-time simulator and an external microcontroller board (Arduino) for Embedding the used Artificial Neural Network ANN.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a real-time cyber intrusion detection mechanism based on recurrent neural networks is implemented for detecting cyber-physical attacks targeting AC microgrids (MG). An AutoRegressive eXogenous Neural Network (NARX) model is deployed as an Intelligent Detection System (IDS), to detect cyber-physical anomalies in the behavior of exchanged active power in a connected AC microgrid. Results are validated through a Hardware-in The loop simulation using the Opal RT real-time simulator and an external microcontroller board (Arduino) for Embedding the used Artificial Neural Network ANN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RNN的交流微电网网络物理攻击检测实验
本文实现了一种基于递归神经网络的实时网络入侵检测机制,用于检测针对交流微电网的网络物理攻击。采用自回归外源性神经网络(NARX)模型作为智能检测系统(IDS),用于检测连接交流微电网中交换有功功率行为中的网络物理异常。通过使用Opal RT实时模拟器和外部微控制器板(Arduino)嵌入所使用的人工神经网络ANN的硬件内环仿真验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced 2nd Harmonic Input Current Ripple Quasi Z-source Microinverter for On-Grid PV Power Conversion A Review of Shore Infrastructures for Electric Ferries Advanced Edge Computing Framework for Grid Power Quality Monitoring of Industrial Motor Drive Applications Stability Studies of Power Systems for More Electric Aircraft An Optimal Sliding-Integral-Derivative (SID) Control of a Grid-Tied Multilevel Inverter under Parameters Mismatch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1