Sin Kim, U. Ijaz, A. K. Khambampati, K. Kim, M. C. Kim
{"title":"Effect of Current Injection Patterns on Dynamic Electrical Resistance Imaging for Fast Transient Processes","authors":"Sin Kim, U. Ijaz, A. K. Khambampati, K. Kim, M. C. Kim","doi":"10.1109/ICSENS.2007.355516","DOIUrl":null,"url":null,"abstract":"In the application of the electrical resistance tomography (ERT) to processes undergoing rapid transient, the conventional static image reconstruction approaches are not successful since the internal conductivity distribution may change during the time taken to acquire a full set of the induced voltages by the injected currents. Hence, the dynamic image reconstruction algorithm has been introduced to reconstruct the tomogram without the full set of data, in principle even with a single pair of current-voltage data. Although the pre-determined current injection protocol plays an important role in the image reconstruction performance, analyses of the effect of current injection patterns on the reconstruction performance have not been performed rigorously. This paper will report the consequences of various current injection protocols and investigates their influence on the reconstruction performance from the view point of the reconstruction error and the temporal resolution.","PeriodicalId":233838,"journal":{"name":"2006 5th IEEE Conference on Sensors","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th IEEE Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2007.355516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the application of the electrical resistance tomography (ERT) to processes undergoing rapid transient, the conventional static image reconstruction approaches are not successful since the internal conductivity distribution may change during the time taken to acquire a full set of the induced voltages by the injected currents. Hence, the dynamic image reconstruction algorithm has been introduced to reconstruct the tomogram without the full set of data, in principle even with a single pair of current-voltage data. Although the pre-determined current injection protocol plays an important role in the image reconstruction performance, analyses of the effect of current injection patterns on the reconstruction performance have not been performed rigorously. This paper will report the consequences of various current injection protocols and investigates their influence on the reconstruction performance from the view point of the reconstruction error and the temporal resolution.