Stochastic Nonlinear Programming Model for Power Plant Operation via Piecewise Linearization

Tomoki Fukuba, Tetsuya Sato, T. Shiina, K. Tokoro
{"title":"Stochastic Nonlinear Programming Model for Power Plant Operation via Piecewise Linearization","authors":"Tomoki Fukuba, Tetsuya Sato, T. Shiina, K. Tokoro","doi":"10.1109/IEEM44572.2019.8978496","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the application of mathematical optimization models to energy problems. Using the latest information technology, we try to utilize renewable energy whose output is unstable. Such efforts are collectively called smart communities. Stochastic programming deals with optimization under uncertain conditions. Since the output of solar power generation in a smart community is uncertain, application of stochastic programming is required. Considering practical operational constraints, this model becomes a stochastic programming problem involving nonlinear recourse, which cannot be solved with typical solvers directly. The problem can be reformulated as a large-scale mixed integer programming problem by piecewise linear approximation to obtain an optimal solution. In our algorithm, we add points for piecewise linear approximation iteratively and increase accuracy of the approximation. In numerical experiments, the effectiveness of the stochastic programming model is shown by comparing it with the deterministic model. Moreover, we calculate a recovery period of investment cost for photovoltaic generation and a storage battery and show usefulness of our model when evaluating a practical operation.","PeriodicalId":255418,"journal":{"name":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM44572.2019.8978496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the application of mathematical optimization models to energy problems. Using the latest information technology, we try to utilize renewable energy whose output is unstable. Such efforts are collectively called smart communities. Stochastic programming deals with optimization under uncertain conditions. Since the output of solar power generation in a smart community is uncertain, application of stochastic programming is required. Considering practical operational constraints, this model becomes a stochastic programming problem involving nonlinear recourse, which cannot be solved with typical solvers directly. The problem can be reformulated as a large-scale mixed integer programming problem by piecewise linear approximation to obtain an optimal solution. In our algorithm, we add points for piecewise linear approximation iteratively and increase accuracy of the approximation. In numerical experiments, the effectiveness of the stochastic programming model is shown by comparing it with the deterministic model. Moreover, we calculate a recovery period of investment cost for photovoltaic generation and a storage battery and show usefulness of our model when evaluating a practical operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分段线性化的电厂运行随机非线性规划模型
本文考虑了数学优化模型在能源问题中的应用。利用最新的信息技术,我们试图利用产量不稳定的可再生能源。这些努力被统称为智能社区。随机规划处理不确定条件下的优化问题。由于智慧社区太阳能发电的输出是不确定的,需要应用随机规划。考虑到实际操作约束,该模型成为一个涉及非线性资源的随机规划问题,不能用典型解直接求解。通过分段线性逼近,可将该问题转化为一个大规模混合整数规划问题,以求得最优解。在该算法中,我们迭代地增加了分段线性逼近的点,提高了逼近的精度。在数值实验中,将随机规划模型与确定性模型进行了比较,证明了随机规划模型的有效性。此外,我们还计算了光伏发电和蓄电池投资成本的回收期,并证明了该模型在评估实际运行时的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Locating Humanitarian Relief Effort Facility Using P-Center Method A Method of Fault Identification Considering High Fix Priority in Open Source Project Model-based Systems Engineering Process for Supporting Variant Selection in the Early Product Development Phase A Method of Parameter Estimation in Flexible Jump Diffusion Process Models for Open Source Maintenance Effort Management Kanban-CONWIP Hybrid Model for Improving Productivity of an Electrostatic Coating Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1