Recurrent interval type-2 neuro-fuzzy control of an electro hydraulic servo system

M. A. Khanesar, O. Kaynak
{"title":"Recurrent interval type-2 neuro-fuzzy control of an electro hydraulic servo system","authors":"M. A. Khanesar, O. Kaynak","doi":"10.1109/AMC.2016.7496414","DOIUrl":null,"url":null,"abstract":"This paper presents a recurrent interval type-2 neuro-fuzzy controller which benefits from a sliding mode theory-based training algorithm. The recurrent interval type-2 neuro-fuzzy benefits from recurrent type-2 membership functions with interval variances which are trained by a novel training method. Furthermore, the adaptation laws considered for the parameters of the controller benefit from an adaptive learning rate. The stability of the proposed training method is considered using an appropriate Lyapunov function. The proposed method is simulated on an electro hydraulic servo system. The results of simulations show that the proposed method can control the system with a satisfactory performance.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a recurrent interval type-2 neuro-fuzzy controller which benefits from a sliding mode theory-based training algorithm. The recurrent interval type-2 neuro-fuzzy benefits from recurrent type-2 membership functions with interval variances which are trained by a novel training method. Furthermore, the adaptation laws considered for the parameters of the controller benefit from an adaptive learning rate. The stability of the proposed training method is considered using an appropriate Lyapunov function. The proposed method is simulated on an electro hydraulic servo system. The results of simulations show that the proposed method can control the system with a satisfactory performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电液伺服系统的循环区间2型神经模糊控制
本文提出了一种基于滑模理论的训练算法的循环区间2型神经模糊控制器。利用一种新颖的训练方法训练出具有区间方差的递归2型隶属函数,从而得到递归区间2型神经模糊。此外,对控制器参数所考虑的自适应律得益于自适应学习率。使用适当的李雅普诺夫函数来考虑所提出的训练方法的稳定性。在电液伺服系统上进行了仿真。仿真结果表明,所提出的控制方法能够达到满意的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D modeling and nonlinear control using algorithmic differentiation for mono-wheel robot Robust H∞ control for Active Magnetic Bearing system with imbalance of the rotor Double-segment sliding mode control for permanent magnet synchronous motor servo drives High back-drivable pseudo I-PD torque control using load-side torque observer with torsion torque sensor Position control system based on inertia measurement unit sensor fusion with Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1