{"title":"Resistive random access memories with nanodiamond dielectric films","authors":"Chichun Lu, Y. Chu, Y. Tzeng","doi":"10.1109/NANO.2013.6720929","DOIUrl":null,"url":null,"abstract":"We report the application of nanodiamond prepared by microwave plasma chemical deposition system as the dielectric film with copper as top electrodes and a tungsten counter electrode for the fabrication of resistive random access memory (RRAM). The RRAM is switched between the high-resistivity state and a low-resistivity state of nanodiamond film. The high or low resistance state can be probed by applying a low voltage across two counter electrodes on two sides of the nanodiamond film and measuring its conduction current. We observed that the Cu/Nanodiamond/W structure shows good performance with ON/OFF current ratio >105 and retention time >104 s. Nanodiamond is known to be chemically inert, good for heat dissipation, and has very low solid solubility in copper. It is, therefore, a suitable dielectric material for RRAM for harsh environments.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report the application of nanodiamond prepared by microwave plasma chemical deposition system as the dielectric film with copper as top electrodes and a tungsten counter electrode for the fabrication of resistive random access memory (RRAM). The RRAM is switched between the high-resistivity state and a low-resistivity state of nanodiamond film. The high or low resistance state can be probed by applying a low voltage across two counter electrodes on two sides of the nanodiamond film and measuring its conduction current. We observed that the Cu/Nanodiamond/W structure shows good performance with ON/OFF current ratio >105 and retention time >104 s. Nanodiamond is known to be chemically inert, good for heat dissipation, and has very low solid solubility in copper. It is, therefore, a suitable dielectric material for RRAM for harsh environments.