Resistive random access memories with nanodiamond dielectric films

Chichun Lu, Y. Chu, Y. Tzeng
{"title":"Resistive random access memories with nanodiamond dielectric films","authors":"Chichun Lu, Y. Chu, Y. Tzeng","doi":"10.1109/NANO.2013.6720929","DOIUrl":null,"url":null,"abstract":"We report the application of nanodiamond prepared by microwave plasma chemical deposition system as the dielectric film with copper as top electrodes and a tungsten counter electrode for the fabrication of resistive random access memory (RRAM). The RRAM is switched between the high-resistivity state and a low-resistivity state of nanodiamond film. The high or low resistance state can be probed by applying a low voltage across two counter electrodes on two sides of the nanodiamond film and measuring its conduction current. We observed that the Cu/Nanodiamond/W structure shows good performance with ON/OFF current ratio >105 and retention time >104 s. Nanodiamond is known to be chemically inert, good for heat dissipation, and has very low solid solubility in copper. It is, therefore, a suitable dielectric material for RRAM for harsh environments.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report the application of nanodiamond prepared by microwave plasma chemical deposition system as the dielectric film with copper as top electrodes and a tungsten counter electrode for the fabrication of resistive random access memory (RRAM). The RRAM is switched between the high-resistivity state and a low-resistivity state of nanodiamond film. The high or low resistance state can be probed by applying a low voltage across two counter electrodes on two sides of the nanodiamond film and measuring its conduction current. We observed that the Cu/Nanodiamond/W structure shows good performance with ON/OFF current ratio >105 and retention time >104 s. Nanodiamond is known to be chemically inert, good for heat dissipation, and has very low solid solubility in copper. It is, therefore, a suitable dielectric material for RRAM for harsh environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米金刚石介电薄膜的电阻随机存取存储器
本文报道了用微波等离子体化学沉积法制备的纳米金刚石作为介质膜,以铜为顶电极,钨为对电极,用于制作电阻式随机存取存储器(RRAM)。RRAM在纳米金刚石薄膜的高电阻率状态和低电阻率状态之间切换。通过在纳米金刚石薄膜两侧的两个对电极上施加低电压并测量其传导电流,可以探测到高电阻或低电阻状态。我们观察到Cu/Nanodiamond/W结构具有良好的性能,开关电流比>105,保持时间>104 s。众所周知,纳米金刚石具有化学惰性,散热性好,在铜中的固体溶解度很低。因此,它是用于恶劣环境的RRAM的合适介电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of quantum well thermoelectric energy harvester by CMOS process ESD protection design for radio-frequency integrated circuits in nanoscale CMOS technology Optical manipulation of biological cell without measurement of cell velocity A bottom-up engineered broadband optical nanoabsorber for radiometry and energy and harnessing applications Fabrication of multilayered tube-shaped microstructures embedding cells inside microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1