Learning Kinematic Machine Models from Videos

Lucas Thies, M. Stamminger, F. Bauer
{"title":"Learning Kinematic Machine Models from Videos","authors":"Lucas Thies, M. Stamminger, F. Bauer","doi":"10.1109/AIVR50618.2020.00028","DOIUrl":null,"url":null,"abstract":"VR/AR applications, such as virtual training or coaching, often require a digital twin of a machine. Such a virtual twin must also include a kinematic model that defines its motion behavior. This behavior is usually expressed by constraints in a physics engine. In this paper, we present a system that automatically derives the kinematic model of a machine from RGB video with an optional depth channel. Our system records a live session while a user performs all typical machine movements. It then searches for trajectories and converts them into linear, circular and helical constraints. Our system can also detect kinematic chains and coupled constraints, for example, when a crank moves a toothed rod.","PeriodicalId":348199,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR50618.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

VR/AR applications, such as virtual training or coaching, often require a digital twin of a machine. Such a virtual twin must also include a kinematic model that defines its motion behavior. This behavior is usually expressed by constraints in a physics engine. In this paper, we present a system that automatically derives the kinematic model of a machine from RGB video with an optional depth channel. Our system records a live session while a user performs all typical machine movements. It then searches for trajectories and converts them into linear, circular and helical constraints. Our system can also detect kinematic chains and coupled constraints, for example, when a crank moves a toothed rod.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从视频中学习运动机器模型
VR/AR应用,如虚拟培训或指导,通常需要机器的数字孪生体。这样的虚拟双胞胎还必须包括定义其运动行为的运动学模型。这种行为通常通过物理引擎中的约束来表达。在本文中,我们提出了一个从RGB视频中自动提取机器运动模型的系统,该系统具有可选的深度通道。当用户执行所有典型的机器动作时,我们的系统会记录一个实时会话。然后,它搜索轨迹并将其转换为线性、圆形和螺旋约束。我们的系统还可以检测运动链和耦合约束,例如,当曲柄移动齿杆时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive and Scalable Layout Synthesis with Design Templates Under The (Plastic) Sea - Sensitizing People Toward Ecological Behavior Using Virtual Reality Controlled by Users’ Physical Activity Extended Abstract: CoShopper - Leveraging Artificial Intelligence for an Enhanced Augmented Reality Grocery Shopping Experience Augmented Reality and Autism Spectrum Disorder Rehabilitation: Scoping review Thermodynamics Reloaded: Experiencing Heating, Ventilation and Air Conditioning in AR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1