Houssam Hajj Hassan, Georgios Bouloukakis, A. Kattepur, D. Conan, Djamel Belaïd
{"title":"PlanIoT: A Framework for Adaptive Data Flow Management in IoT-enhanced Spaces","authors":"Houssam Hajj Hassan, Georgios Bouloukakis, A. Kattepur, D. Conan, Djamel Belaïd","doi":"10.1109/SEAMS59076.2023.00029","DOIUrl":null,"url":null,"abstract":"This paper presents PlanIoT, a middleware approach for enabling adaptive data flow management in IoT-enhanced spaces (e.g., buildings) using automated planning methodologies. Today’s sensorized spaces deploy applications falling to diverse categories such as analytics, real-time, transactional, video streaming and emergency response. Depending on the category, applications have different QoS requirements related to timely delivery, networking resources, accuracy, etc. Typically, state-of-the-art data exchange systems introduce policies for bandwidth allocation or prioritization for specific data types and applications (e.g., camera data). PlanIoT introduces a generic QoS model to evaluate the performance of data flowing in Edge infrastructures and generates their performance metrics dataset. Such a dataset is used as input to automated planning representations to intelligently satisfy QoS requirements of deployed applications. The experimental results show that PlanIoT improves the end-to-end response time of time-sensitive flows by more than 50%, especially with an overloaded Edge infrastructure. We also show the adaptivity of our approach by considering emergency cases that require Edge infrastructure reconfiguration.","PeriodicalId":262204,"journal":{"name":"2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS59076.2023.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents PlanIoT, a middleware approach for enabling adaptive data flow management in IoT-enhanced spaces (e.g., buildings) using automated planning methodologies. Today’s sensorized spaces deploy applications falling to diverse categories such as analytics, real-time, transactional, video streaming and emergency response. Depending on the category, applications have different QoS requirements related to timely delivery, networking resources, accuracy, etc. Typically, state-of-the-art data exchange systems introduce policies for bandwidth allocation or prioritization for specific data types and applications (e.g., camera data). PlanIoT introduces a generic QoS model to evaluate the performance of data flowing in Edge infrastructures and generates their performance metrics dataset. Such a dataset is used as input to automated planning representations to intelligently satisfy QoS requirements of deployed applications. The experimental results show that PlanIoT improves the end-to-end response time of time-sensitive flows by more than 50%, especially with an overloaded Edge infrastructure. We also show the adaptivity of our approach by considering emergency cases that require Edge infrastructure reconfiguration.