PlanIoT: A Framework for Adaptive Data Flow Management in IoT-enhanced Spaces

Houssam Hajj Hassan, Georgios Bouloukakis, A. Kattepur, D. Conan, Djamel Belaïd
{"title":"PlanIoT: A Framework for Adaptive Data Flow Management in IoT-enhanced Spaces","authors":"Houssam Hajj Hassan, Georgios Bouloukakis, A. Kattepur, D. Conan, Djamel Belaïd","doi":"10.1109/SEAMS59076.2023.00029","DOIUrl":null,"url":null,"abstract":"This paper presents PlanIoT, a middleware approach for enabling adaptive data flow management in IoT-enhanced spaces (e.g., buildings) using automated planning methodologies. Today’s sensorized spaces deploy applications falling to diverse categories such as analytics, real-time, transactional, video streaming and emergency response. Depending on the category, applications have different QoS requirements related to timely delivery, networking resources, accuracy, etc. Typically, state-of-the-art data exchange systems introduce policies for bandwidth allocation or prioritization for specific data types and applications (e.g., camera data). PlanIoT introduces a generic QoS model to evaluate the performance of data flowing in Edge infrastructures and generates their performance metrics dataset. Such a dataset is used as input to automated planning representations to intelligently satisfy QoS requirements of deployed applications. The experimental results show that PlanIoT improves the end-to-end response time of time-sensitive flows by more than 50%, especially with an overloaded Edge infrastructure. We also show the adaptivity of our approach by considering emergency cases that require Edge infrastructure reconfiguration.","PeriodicalId":262204,"journal":{"name":"2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS59076.2023.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents PlanIoT, a middleware approach for enabling adaptive data flow management in IoT-enhanced spaces (e.g., buildings) using automated planning methodologies. Today’s sensorized spaces deploy applications falling to diverse categories such as analytics, real-time, transactional, video streaming and emergency response. Depending on the category, applications have different QoS requirements related to timely delivery, networking resources, accuracy, etc. Typically, state-of-the-art data exchange systems introduce policies for bandwidth allocation or prioritization for specific data types and applications (e.g., camera data). PlanIoT introduces a generic QoS model to evaluate the performance of data flowing in Edge infrastructures and generates their performance metrics dataset. Such a dataset is used as input to automated planning representations to intelligently satisfy QoS requirements of deployed applications. The experimental results show that PlanIoT improves the end-to-end response time of time-sensitive flows by more than 50%, especially with an overloaded Edge infrastructure. We also show the adaptivity of our approach by considering emergency cases that require Edge infrastructure reconfiguration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PlanIoT:物联网增强空间中自适应数据流管理框架
本文介绍了PlanIoT,这是一种中间件方法,用于使用自动化规划方法在物联网增强的空间(例如建筑物)中实现自适应数据流管理。今天的传感器空间部署的应用程序属于不同的类别,如分析、实时、事务、视频流和应急响应。根据不同的类别,应用程序在及时交付、网络资源、准确性等方面有不同的QoS要求。通常,最先进的数据交换系统为带宽分配或特定数据类型和应用程序(例如,相机数据)的优先级引入策略。PlanIoT引入了一个通用的QoS模型来评估边缘基础设施中数据流的性能,并生成其性能指标数据集。这样的数据集被用作自动规划表示的输入,以智能地满足已部署应用程序的QoS需求。实验结果表明,PlanIoT将时间敏感流的端到端响应时间提高了50%以上,特别是在超载边缘基础设施的情况下。我们还通过考虑需要重新配置边缘基础设施的紧急情况来展示我们的方法的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Runtime Integration of New Models in Digital Twins Adaptive Controllers and Digital Twin for Self-Adaptive Robotic Manipulators Software Self-adaptation and Industry: Blame MAPE-K Artifact: Implementation of an Adaptive Flow Management Framework for IoT Spaces PlanIoT: A Framework for Adaptive Data Flow Management in IoT-enhanced Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1