A High-Yield Area-Power Efficient DWT Hardware for Implantable Neural Interface Applications

A. Kamboh, A. Mason, K. Oweiss
{"title":"A High-Yield Area-Power Efficient DWT Hardware for Implantable Neural Interface Applications","authors":"A. Kamboh, A. Mason, K. Oweiss","doi":"10.1109/CNE.2007.369649","DOIUrl":null,"url":null,"abstract":"Temporal processing of neural recordings with high-density microelectrode arrays implanted in the cortex is highly desired to alleviate the data telemetry bottleneck. By exploiting the energy compactness capabilities of the discrete wavelet transform (DWT), our previous work has shown that it is a viable data compression tool that faithfully preserves the information in the neural data. This paper describes an area-power minimized hardware implementation of the multi-level, multi-channel DWT. Performance tradeoffs and key design decisions for implantable applications are analyzed. A 32-channel, 4-level version of the circuit has been custom designed in 0.18mum CMOS and occupies only 0.16mm2, making it very suitable for high-yield intra-cortical neural interface applications.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Temporal processing of neural recordings with high-density microelectrode arrays implanted in the cortex is highly desired to alleviate the data telemetry bottleneck. By exploiting the energy compactness capabilities of the discrete wavelet transform (DWT), our previous work has shown that it is a viable data compression tool that faithfully preserves the information in the neural data. This paper describes an area-power minimized hardware implementation of the multi-level, multi-channel DWT. Performance tradeoffs and key design decisions for implantable applications are analyzed. A 32-channel, 4-level version of the circuit has been custom designed in 0.18mum CMOS and occupies only 0.16mm2, making it very suitable for high-yield intra-cortical neural interface applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于植入式神经接口应用的高成品率面积-功率效率的DWT硬件
利用植入大脑皮层的高密度微电极阵列对神经记录进行时间处理是缓解数据遥测瓶颈的迫切需要。通过利用离散小波变换(DWT)的能量紧凑性,我们之前的工作已经表明它是一种可行的数据压缩工具,忠实地保留了神经数据中的信息。本文描述了一种面积功耗最小的多级、多通道DWT的硬件实现。分析了可植入应用的性能权衡和关键设计决策。该电路的32通道4电平版本已在0.18 mm CMOS上定制设计,占地面积仅为0.16mm2,非常适合用于高产量的皮质内神经接口应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1