Online volt/var control in a smart grid with multiple distributed generation systems

P. Raghavendra, D. N. Gaonkar
{"title":"Online volt/var control in a smart grid with multiple distributed generation systems","authors":"P. Raghavendra, D. N. Gaonkar","doi":"10.1109/POWERI.2016.8077407","DOIUrl":null,"url":null,"abstract":"The higher shares of distributed generation (DG) sources lead to unpredictable rise in voltage level due to intermittent and stochastic characteristics of DGs. This paper intends to report the online Volt/Var control in a smart grid with multiple DG systems. The objective of Volt/Var control is to recover the network voltages within the admissible limits by coordinating the operation of the DG and the OLTC transformer. Firstly, voltage profile of the system is estimated by remote terminal units (RTUs) placed only at DG node. Next, a direct voltage sensitivity based method is developed to choose best DG for reactive power injection in multiple DG environments. Finally, OLTC transformer is employed in voltage regulation process when DGs reactive power is insufficient for maintaining the voltages within predefined limits. The reported method tested on 12-bus radial distribution network to validate the theory. The reported simulation results show that the presented method effectively maintains network voltages within admissible limits.","PeriodicalId":332286,"journal":{"name":"2016 IEEE 7th Power India International Conference (PIICON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Power India International Conference (PIICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERI.2016.8077407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The higher shares of distributed generation (DG) sources lead to unpredictable rise in voltage level due to intermittent and stochastic characteristics of DGs. This paper intends to report the online Volt/Var control in a smart grid with multiple DG systems. The objective of Volt/Var control is to recover the network voltages within the admissible limits by coordinating the operation of the DG and the OLTC transformer. Firstly, voltage profile of the system is estimated by remote terminal units (RTUs) placed only at DG node. Next, a direct voltage sensitivity based method is developed to choose best DG for reactive power injection in multiple DG environments. Finally, OLTC transformer is employed in voltage regulation process when DGs reactive power is insufficient for maintaining the voltages within predefined limits. The reported method tested on 12-bus radial distribution network to validate the theory. The reported simulation results show that the presented method effectively maintains network voltages within admissible limits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多分布式发电系统智能电网的在线电压/无功控制
由于分布式电源的间歇性和随机特性,分布式电源的高份额导致不可预测的电压水平上升。本文研究了智能电网中多DG系统的在线电压/无功控制。电压/Var控制的目的是通过协调DG和OLTC变压器的运行,使网络电压恢复到允许的范围内。首先,通过仅放置在DG节点的远程终端单元(rtu)来估计系统的电压分布。其次,提出了一种基于直接电压灵敏度的方法,在多个DG环境下选择最佳DG进行无功注入。最后,当dg无功功率不足以将电压维持在预定范围内时,采用OLTC变压器进行电压调节。该方法在12母线径向配电网上进行了实验验证。仿真结果表明,该方法能有效地将电网电压保持在允许范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of power quality disturbances in the utility grid with solar energy using S-transform Full bridge level doubling network assisted multilevel DC link inverter Distribution system expansion planning incorporating distributed generation A solar PV system controlled by least sum of exponentials algorithm Photo-voltaic system for refrigeration plants in isolated areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1