Towards energy-efficient UAV-assisted 5G internet of underwater things

Sandeep Verma, Md Shahbaz Akhtar, Aneek Adhya, Varun G. Menon
{"title":"Towards energy-efficient UAV-assisted 5G internet of underwater things","authors":"Sandeep Verma, Md Shahbaz Akhtar, Aneek Adhya, Varun G. Menon","doi":"10.1145/3555661.3560855","DOIUrl":null,"url":null,"abstract":"Adhering to the requirements of Fifth Generation (5G) communication for seamless data gathering, especially from underwater resources, Unmanned Aerial Vehicles (UAVs)-assisted 5G Internet of Underwater Things (IoUT) have been leaving an everlasting impression. However, the resource-constrained underwater sensor nodes limit the potential of IoUT for reliable data dissemination due to their shorter operational period. To extenuate this concern, in this paper we present an Energy-Efficient Unmanned Aerial Vehicle (UAV)-assisted Routing Architecture (EEURA) for 5G IoUT. The Cluster Head (CH) is selected using Improved-Tunicate Swarm Algorithm (I-TSA). We use Energy-Harvesting (EH)-enabled nodes and a single UAV for data collection from the underwater deployed sensor nodes to extenuate hot-spot problem. It is evident from the simulation investigation that EEURA performs exclusively better than the state-of-the-art routing methods in IoUT.","PeriodicalId":151188,"journal":{"name":"Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555661.3560855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Adhering to the requirements of Fifth Generation (5G) communication for seamless data gathering, especially from underwater resources, Unmanned Aerial Vehicles (UAVs)-assisted 5G Internet of Underwater Things (IoUT) have been leaving an everlasting impression. However, the resource-constrained underwater sensor nodes limit the potential of IoUT for reliable data dissemination due to their shorter operational period. To extenuate this concern, in this paper we present an Energy-Efficient Unmanned Aerial Vehicle (UAV)-assisted Routing Architecture (EEURA) for 5G IoUT. The Cluster Head (CH) is selected using Improved-Tunicate Swarm Algorithm (I-TSA). We use Energy-Harvesting (EH)-enabled nodes and a single UAV for data collection from the underwater deployed sensor nodes to extenuate hot-spot problem. It is evident from the simulation investigation that EEURA performs exclusively better than the state-of-the-art routing methods in IoUT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向高能效的无人机辅助5G水下物联网
坚持第五代(5G)通信对无缝数据采集,特别是水下资源数据采集的要求,无人机(uav)辅助的5G水下物联网(IoUT)已经给人留下了深刻的印象。然而,水下传感器节点资源受限,由于其运行周期较短,限制了IoUT可靠数据传播的潜力。为了减轻这种担忧,在本文中,我们提出了一种用于5G IoUT的节能无人机(UAV)辅助路由架构(EEURA)。采用改进的簇头群算法(I-TSA)选择簇头。我们使用能量收集(EH)节点和单个无人机从水下部署的传感器节点收集数据,以减轻热点问题。从模拟调查中可以明显看出,EEURA在IoUT中的性能优于最先进的路由方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the performance of multi-tier space-air-ground integrated network exploiting mmWave and THz capabilities for 6G communication SoftFloat PCA-RNN-based intelligent mobile drone spectrum sensing algorithm Joint optimization for latency minimization in UAV-assisted MEC networks Joint design of beamforming and trajectory for integrated sensing and communication drone networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1