Mapping of finite-element grids onto parallel computers using neural networks

R. Tan, V. Lakshmi Narasimhan
{"title":"Mapping of finite-element grids onto parallel computers using neural networks","authors":"R. Tan, V. Lakshmi Narasimhan","doi":"10.1109/ICAPP.1997.651533","DOIUrl":null,"url":null,"abstract":"In this paper, LSOM (Load-balancing Self-Organizing Map), a neural network based on Kohonen's self-organizing map is proposed for the problem of mapping finite-element method (FEM) grids to distributed-memory parallel computers with mesh interconnection networks. The rough global ordering produced by LSOM is then combined with the local refinement Kernighan-Lin algorithm (called LSOM-KL) to obtain the solution. LSOM-KL obtained a load imbalance of less than 0.1% and a low number of hops, comparable to results obtained with commonly used recursive bisection methods.","PeriodicalId":325978,"journal":{"name":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1997.651533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, LSOM (Load-balancing Self-Organizing Map), a neural network based on Kohonen's self-organizing map is proposed for the problem of mapping finite-element method (FEM) grids to distributed-memory parallel computers with mesh interconnection networks. The rough global ordering produced by LSOM is then combined with the local refinement Kernighan-Lin algorithm (called LSOM-KL) to obtain the solution. LSOM-KL obtained a load imbalance of less than 0.1% and a low number of hops, comparable to results obtained with commonly used recursive bisection methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络将有限元网格映射到并行计算机上
本文提出了一种基于Kohonen自组织映射的神经网络LSOM (Load-balancing Self-Organizing Map),用于将有限元网格映射到具有网格互连网络的分布式存储并行计算机上。然后将LSOM生成的粗糙全局排序与局部细化Kernighan-Lin算法(称为LSOM- kl)结合得到解。LSOM-KL获得了小于0.1%的负载不平衡和较低的跳数,与常用的递归对分方法得到的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An FPGA-based on-line neural system in photon counting intensified imagers for space applications A parallel sort-balance mutual range-join algorithm on hypercube computers Real-time obstacle detection on a massively parallel linear architecture Eigenvectors-based parallelisation of nested loops with affine dependences Parallel algorithms for spatial data partition and join processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1