Li Yifan, Cao Rongmin, Hou Zhongsheng, Zhou Hui Xing, Chang Debiao, Jia Jihui
{"title":"Model - free Adaptive Sliding Mode Predictive Control of Linear Ultrasonic Motor","authors":"Li Yifan, Cao Rongmin, Hou Zhongsheng, Zhou Hui Xing, Chang Debiao, Jia Jihui","doi":"10.1109/DDCLS58216.2023.10165912","DOIUrl":null,"url":null,"abstract":"Because the linear ultrasonic motor system has obvious nonlinearity and time-varying. In the operation process, the tracking error, mechanical delays, and other factors will greatly impact the position tracking accuracy. To reduce the linear ultrasonic motor position steady-state error. Sliding mode control (SMC) is invariant to system disturbance and model-free adaptive predictive control (MFAPC) can realize adaptive control only by input and output data of a controlled system, this paper designed a model-free adaptive sliding mode predictive controller (MFASMPC) and proved its stability and convergence Finally, the position control of linear ultrasonic motor based on model-free adaptive sliding mode predictive control method is simulated and analyzed. Theoretical proof and simulation results show that such an algorithm can effectively reduce the steady-state error to meet the control accuracy requirements.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10165912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Because the linear ultrasonic motor system has obvious nonlinearity and time-varying. In the operation process, the tracking error, mechanical delays, and other factors will greatly impact the position tracking accuracy. To reduce the linear ultrasonic motor position steady-state error. Sliding mode control (SMC) is invariant to system disturbance and model-free adaptive predictive control (MFAPC) can realize adaptive control only by input and output data of a controlled system, this paper designed a model-free adaptive sliding mode predictive controller (MFASMPC) and proved its stability and convergence Finally, the position control of linear ultrasonic motor based on model-free adaptive sliding mode predictive control method is simulated and analyzed. Theoretical proof and simulation results show that such an algorithm can effectively reduce the steady-state error to meet the control accuracy requirements.