Variational Autoencoding Dialogue Sub-Structures Using a Novel Hierarchical Annotation Schema

Maitreyee Tewari, Michele Persiani
{"title":"Variational Autoencoding Dialogue Sub-Structures Using a Novel Hierarchical Annotation Schema","authors":"Maitreyee Tewari, Michele Persiani","doi":"10.1109/CiSt49399.2021.9357245","DOIUrl":null,"url":null,"abstract":"This work presents a novel method to extract sub-structures in dialogues for the following genres: human-human task driven, human-human chit-chat, human-machine task driven, and human-machine chit-chat dialogues. The model consists of a novel semi-supervised annotation schema of syntactic features, communicative functions, dialogue policy, sequence expansion and sender information. These labels are then transformed into tuples of three, four and five segments, the tuples are used as features and modelled to learn sub-structures in above mentioned genres of dialogues with sequence-to-sequence variational autoencoders. The results analyse the latent space of generic sub-structures decomposed by PCA and ICA, showing an increase in silhouette scores for clustering of the latent space.","PeriodicalId":253233,"journal":{"name":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CiSt49399.2021.9357245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel method to extract sub-structures in dialogues for the following genres: human-human task driven, human-human chit-chat, human-machine task driven, and human-machine chit-chat dialogues. The model consists of a novel semi-supervised annotation schema of syntactic features, communicative functions, dialogue policy, sequence expansion and sender information. These labels are then transformed into tuples of three, four and five segments, the tuples are used as features and modelled to learn sub-structures in above mentioned genres of dialogues with sequence-to-sequence variational autoencoders. The results analyse the latent space of generic sub-structures decomposed by PCA and ICA, showing an increase in silhouette scores for clustering of the latent space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层标注模式的对话子结构变分自动编码
这项工作提出了一种新的方法来提取以下类型对话中的子结构:人机任务驱动、人机聊天、人机任务驱动和人机聊天对话。该模型由一种新颖的语法特征、交际功能、对话策略、序列扩展和发送方信息的半监督标注模式组成。然后将这些标签转换为三个,四个和五个片段的元组,元组用作特征并建模,以使用序列到序列变分自编码器学习上述对话类型中的子结构。结果表明,通过主成分分析和独立成分分析,对潜在空间进行聚类的剪影分数增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CNN-CRF Inference Models for 3D Mesh Segmentation An Effective Packet Loss Recovery Scheme Using a Cache Server in IPTV Multicast Service TermInteract: An Online Tool for Terminologists Aimed at Providing Terminology Quality Metrics Proposing solutions with an application server implementing telephony services in the IMS network Corpus and Baseline Model for Domain-Specific Entity Recognition in German
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1