Strategies for parameter extraction of the time constant distribution of time-dependent variability models for nanometer-scale devices

F. Fernández, E. Roca, P. Saraza-Canflanca, J. Martín-Martínez, R. Rodríguez, M. Nafría, R. Castro-López
{"title":"Strategies for parameter extraction of the time constant distribution of time-dependent variability models for nanometer-scale devices","authors":"F. Fernández, E. Roca, P. Saraza-Canflanca, J. Martín-Martínez, R. Rodríguez, M. Nafría, R. Castro-López","doi":"10.1109/SMACD58065.2023.10192206","DOIUrl":null,"url":null,"abstract":"Time-dependent variability phenomena are stochastic and discrete for nanometer-scale technologies, and, hence, must be statistically characterized. These phenomena are attributed to the emission and capture of charges in device defects. This paper explores two different strategies to extract, from experimental data, the distribution parameters of the time constants of the defects. It delves into the accuracy of each strategy, showing how the extraction strategy can have a huge impact on the accuracy and the amount of characterization data required, and, therefore, on the amount of (expensive) characterization time in the lab.","PeriodicalId":239306,"journal":{"name":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD58065.2023.10192206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time-dependent variability phenomena are stochastic and discrete for nanometer-scale technologies, and, hence, must be statistically characterized. These phenomena are attributed to the emission and capture of charges in device defects. This paper explores two different strategies to extract, from experimental data, the distribution parameters of the time constants of the defects. It delves into the accuracy of each strategy, showing how the extraction strategy can have a huge impact on the accuracy and the amount of characterization data required, and, therefore, on the amount of (expensive) characterization time in the lab.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米器件时变率模型时间常数分布参数提取策略
随时间变化的现象是随机和离散的纳米尺度技术,因此,必须统计表征。这些现象归因于器件缺陷中电荷的发射和捕获。本文探讨了从实验数据中提取缺陷时间常数分布参数的两种不同策略。它深入研究了每种策略的准确性,展示了提取策略如何对准确性和所需表征数据的数量产生巨大影响,因此,对实验室中(昂贵的)表征时间的数量产生巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PyXEL: Exploring Bitstream Analysis to Assess and Enhance the Robustness of Designs on FPGAs A Simplified Variability-Aware VCM Memristor Model for Efficient Circuit Simulation SMACD 2023 Cover Page Design considerations for a CMOS 65-nm RTN-based PUF Design of Low Power & Low Noise On-Chip BioAmplifier in Cooperation with Analog IC Synthesis at 130nm Skywater Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1