Dynamic Topological Data Analysis for Functional Brain Signals

Tananun Songdechakraiwut, M. Chung
{"title":"Dynamic Topological Data Analysis for Functional Brain Signals","authors":"Tananun Songdechakraiwut, M. Chung","doi":"10.1109/ISBIWorkshops50223.2020.9153431","DOIUrl":null,"url":null,"abstract":"We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynamically changing topological patterns. The method is applied to the resting-state functional magnetic resonance imaging (fMRI) of the human brain. We demonstrate that the dynamic-TDA can capture the topological patterns that are consistently observed across different time points in the resting-state fMRI.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynamically changing topological patterns. The method is applied to the resting-state functional magnetic resonance imaging (fMRI) of the human brain. We demonstrate that the dynamic-TDA can capture the topological patterns that are consistently observed across different time points in the resting-state fMRI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑功能信号的动态拓扑数据分析
我们提出了一种新的动态拓扑数据分析(TDA)框架,该框架在3D功能脑图像的时间序列上构建持久的同源性。该方法将时间序列编码为Vietoris-Rips复合体及其相应的条形码的时序序列,用于研究动态变化的拓扑模式。将该方法应用于人脑静息状态的功能磁共振成像(fMRI)。我们证明动态tda可以捕获在静息状态fMRI中不同时间点一致观察到的拓扑模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material Decomposition Problem in Spectral CT: A Transfer Deep Learning Approach Deep Convolutional Neural Network for Parkinson’s Disease Based Handwriting Screening Deep Quantized Representation For Enhanced Reconstruction Multi-Channel Deep Neural Network For Temporal Lobe Epilepsy Classification Using Multimodal Mri Data Joint Low Dose CT Denoising And Kidney Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1