{"title":"Dynamic Topological Data Analysis for Functional Brain Signals","authors":"Tananun Songdechakraiwut, M. Chung","doi":"10.1109/ISBIWorkshops50223.2020.9153431","DOIUrl":null,"url":null,"abstract":"We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynamically changing topological patterns. The method is applied to the resting-state functional magnetic resonance imaging (fMRI) of the human brain. We demonstrate that the dynamic-TDA can capture the topological patterns that are consistently observed across different time points in the resting-state fMRI.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynamically changing topological patterns. The method is applied to the resting-state functional magnetic resonance imaging (fMRI) of the human brain. We demonstrate that the dynamic-TDA can capture the topological patterns that are consistently observed across different time points in the resting-state fMRI.