A data mining method for Facebook social network: Take “New Row Mian (Beef Noodle)” in Taiwan for example

Jong-Shin Chen, Chi-Yueh Hsu, Cheng-Ying Yang, Ching-Chuan Wei, Han Guo Ciang
{"title":"A data mining method for Facebook social network: Take “New Row Mian (Beef Noodle)” in Taiwan for example","authors":"Jong-Shin Chen, Chi-Yueh Hsu, Cheng-Ying Yang, Ching-Chuan Wei, Han Guo Ciang","doi":"10.1109/ICAWST.2017.8256438","DOIUrl":null,"url":null,"abstract":"Facebook penetration rate in Taiwan is the highest in the world, until July 2015 in Taiwan, the number of daily users reached 13 million for approximately 23 million population. Location-based Facebook check-in service is a hot topic, numerous Facebook users go to their interested numerous checkin-in places and check in there. Taiwan beef noodle is considered a national dish. 2011 Taipei International Beef Festival has been Taiwan beef noodle translated as New Row Mian. The naming imitates Japanese Sushi or Korean Kimchi that translated from the local language literal translation, highlighting the unique culture. Through the culture in the human activities, it will also produce the relevant Facebook check-in places and check-in behaviors. In this study, we propose a method to collect the big data of Facebook check-in places, find out the places related to “New Row Mian” and position for these places.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facebook penetration rate in Taiwan is the highest in the world, until July 2015 in Taiwan, the number of daily users reached 13 million for approximately 23 million population. Location-based Facebook check-in service is a hot topic, numerous Facebook users go to their interested numerous checkin-in places and check in there. Taiwan beef noodle is considered a national dish. 2011 Taipei International Beef Festival has been Taiwan beef noodle translated as New Row Mian. The naming imitates Japanese Sushi or Korean Kimchi that translated from the local language literal translation, highlighting the unique culture. Through the culture in the human activities, it will also produce the relevant Facebook check-in places and check-in behaviors. In this study, we propose a method to collect the big data of Facebook check-in places, find out the places related to “New Row Mian” and position for these places.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种针对Facebook社交网络的数据挖掘方法:以台湾“新排面”为例
Facebook在台湾的渗透率是世界上最高的,直到2015年7月,台湾的日用户数达到1300万,人口约为2300万。基于位置的Facebook签到服务是一个热门话题,许多Facebook用户去他们感兴趣的许多签到地点并在那里签到。台湾牛肉面被认为是一道国菜。2011台北国际牛肉节已将台湾牛肉面翻译为新列面。这一命名模仿了从当地语言直译过来的日本寿司或韩国泡菜,突出了独特的文化。通过人类活动中的文化,也会产生相关的Facebook签到地点和签到行为。在本研究中,我们提出了一种收集Facebook签到地点大数据的方法,找出与“新排棉”相关的地点和这些地点的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1