T. Mabuchi, K. Miyashiro, Minoru Watanabe, A. Ogiwara
{"title":"Defect Tolerance of an Optically Reconfigurable Gate Array with a One-time Writable Volume Holographic Memory","authors":"T. Mabuchi, K. Miyashiro, Minoru Watanabe, A. Ogiwara","doi":"10.1109/AHS.2009.62","DOIUrl":null,"url":null,"abstract":"Optically reconfigurable gate arrays (ORGAs) have been developed as a type of multi-context field programmable gate array to realize fast reconfiguration and numerous reconfiguration contexts. Along with such advantages, ORGAs have high defect tolerance. They consist simply of a holographic memory, a laser diode array, and a gate array VLSI. Even if a gate array VLSI includes defective areas, the ORGAs capability of perfectly parallel programmability enables avoidance of those defective areas through alternative use of other non-defective areas. Moreover, a holographic memory to store contexts is known to have high defect tolerance because each bit of a reconfiguration context can be generated from the entire holographic memory.Consequently, damage of a holographic memory rarely affects its diffraction pattern or a reconfiguration context. For that reason, ORGAs are extremely robust against component defects in devices such as a laser array, a gate array, and a holographic memory, and are particularly useful for space applications, which require high reliability.This paper presents experimentation related to the defect tolerance of new optically reconfigurable gate array with a one-time easily writable volume holographic memory.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optically reconfigurable gate arrays (ORGAs) have been developed as a type of multi-context field programmable gate array to realize fast reconfiguration and numerous reconfiguration contexts. Along with such advantages, ORGAs have high defect tolerance. They consist simply of a holographic memory, a laser diode array, and a gate array VLSI. Even if a gate array VLSI includes defective areas, the ORGAs capability of perfectly parallel programmability enables avoidance of those defective areas through alternative use of other non-defective areas. Moreover, a holographic memory to store contexts is known to have high defect tolerance because each bit of a reconfiguration context can be generated from the entire holographic memory.Consequently, damage of a holographic memory rarely affects its diffraction pattern or a reconfiguration context. For that reason, ORGAs are extremely robust against component defects in devices such as a laser array, a gate array, and a holographic memory, and are particularly useful for space applications, which require high reliability.This paper presents experimentation related to the defect tolerance of new optically reconfigurable gate array with a one-time easily writable volume holographic memory.