A preliminary evaluation of Echo State Networks for Brugada syndrome classification

Giovanna Maria Dimitri, C. Gallicchio, A. Micheli, M.A. Morales, E. Ungaro, F. Vozzi
{"title":"A preliminary evaluation of Echo State Networks for Brugada syndrome classification","authors":"Giovanna Maria Dimitri, C. Gallicchio, A. Micheli, M.A. Morales, E. Ungaro, F. Vozzi","doi":"10.1109/SSCI50451.2021.9659966","DOIUrl":null,"url":null,"abstract":"In the present study recurrent neural networks, in particular Echo State Networks (ESNs), have been applied for the prediction of Brugada Syndrome (BrS) from electrocardiogram (ECG) signals. The research lays its foundations in BrAID (Brugada syndrome and Artificial Intelligence applications to Diagnosis), a project aimed at developing an innovative system for early detection and classification of BrS Type 1. The ultimate objective of the BrAID platform is to help clinicians to improve the BrS diagnosis process, to detect a pattern in ECG, and to combine them with multi-omics information through Artificial Intelligence (AI) - Machine Learning (ML) models, such as ESNs. We report novel preliminary results of this approach, presenting the first baseline results, in terms of accuracy, for BrS recognition using ECG analysis, with the application of ESNs. Such results are particularly encouraging and may shed light on the possibility of using this model as a computational intelligence clinical support system tool for healthcare applications.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present study recurrent neural networks, in particular Echo State Networks (ESNs), have been applied for the prediction of Brugada Syndrome (BrS) from electrocardiogram (ECG) signals. The research lays its foundations in BrAID (Brugada syndrome and Artificial Intelligence applications to Diagnosis), a project aimed at developing an innovative system for early detection and classification of BrS Type 1. The ultimate objective of the BrAID platform is to help clinicians to improve the BrS diagnosis process, to detect a pattern in ECG, and to combine them with multi-omics information through Artificial Intelligence (AI) - Machine Learning (ML) models, such as ESNs. We report novel preliminary results of this approach, presenting the first baseline results, in terms of accuracy, for BrS recognition using ECG analysis, with the application of ESNs. Such results are particularly encouraging and may shed light on the possibility of using this model as a computational intelligence clinical support system tool for healthcare applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回声状态网络对Brugada综合征分类的初步评价
在目前的研究中,递归神经网络,特别是回声状态网络(ESNs)已被应用于从心电图(ECG)信号预测Brugada综合征(BrS)。该研究为BrAID (Brugada综合征和人工智能应用于诊断)项目奠定了基础,该项目旨在开发一种创新的Brugada综合征1型早期检测和分类系统。BrAID平台的最终目标是帮助临床医生改进BrS诊断过程,检测ECG模式,并通过人工智能(AI) -机器学习(ML)模型(如ESNs)将其与多组学信息相结合。我们报告了这种方法的新颖初步结果,就使用ECG分析和esn的应用进行BrS识别的准确性而言,提出了第一个基线结果。这样的结果特别令人鼓舞,并可能阐明使用该模型作为医疗保健应用程序的计算智能临床支持系统工具的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1