Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping

Aamir Mustafa, Param Hanji, Rafał K. Mantiuk
{"title":"Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping","authors":"Aamir Mustafa, Param Hanji, Rafał K. Mantiuk","doi":"10.1145/3565516.3565520","DOIUrl":null,"url":null,"abstract":"Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.","PeriodicalId":367303,"journal":{"name":"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565516.3565520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从图像对中提取风格用于全局正、逆色调映射
许多图像增强或编辑操作,如正向和反向色调映射或色彩分级,没有唯一的解决方案,而是一系列解决方案,每个解决方案代表不同的风格。尽管如此,现有的基于学习的方法试图学习一个独特的映射,而忽略了这种风格。在这项工作中,我们展示了关于风格的信息可以从图像对的集合中提取出来,并编码成二维或三维向量。这不仅为我们提供了一个有效的表示,而且为编辑图像样式提供了一个可解释的潜在空间。我们将一对图像之间的全局颜色映射表示为自定义归一化流,以像素颜色的多项式为基础。我们表明,这种网络在低维空间编码图像风格时比PCA或VAE更有效,并使我们获得接近40 dB的精度,比最先进的方法提高了约7-10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Advances in Real Noise Image Denoisers The Colour of Horror Tragic Talkers: A Shakespearean Sound- and Light-Field Dataset for Audio-Visual Machine Learning Research Light Field GAN-based View Synthesis using full 4D information Model-Based Deep Portrait Relighting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1