CHEMICAL POTENTIAL QUANTIZATION AND BOSE-EINSTEIN CONDENSATION

Jiu-ren Zheng
{"title":"CHEMICAL POTENTIAL QUANTIZATION AND BOSE-EINSTEIN CONDENSATION","authors":"Jiu-ren Zheng","doi":"10.1088/1004-423X/8/10/001","DOIUrl":null,"url":null,"abstract":"In this paper, first of all, we proved if the ideal Bose gas with a finite volume and number of particles has a non-degenerate single-particle energy level n, the chemical potential μ can take the value μn = n and there is a phase transition temperature Tp,n, where n = 0,1,2 Taking 0 ≤ n Tp,n+1. When the temperature T > Tp,n or T ≤ Tp,n+1, μ # n and the most probable occupation number Nn = 0. In the temperature interval Tp,n ≥ T > Tp,n+1, μ = n and 0 ≤ Nn = N - NjsupNn, where Nj is the most probable occupation number in the degenerate level j. Thus, if the finite ideal Bose gas has some non-degenerate single-particle levels, there exists a characteristic temperature Tp = Tp,0. The chemical potential μ is quantized when T ≤ Tp, and this leads to the creation of a macroscopic quantum state (pure state) or Bose-Einstein condensation phase. Tp = Tp,0 is a first-order phase transition point, Tp,n#0 is a zero-order phase transition point. Next, we obtained a new expression of the most probable distribution of the finite ideal Bose gas. In this expression Nj is directly proportional to gj - 1, where gj and Nj are, respectively, the degeneracy and the most probable occupation number in the degenerate level j. This property agrees with what chemical potential can be quantized if there is a non-degenerate level for the finite ideal Bose gas. Finally, using this expression, we defined a micro-partition function M, obtained the statistical expressions of some thermodynamical quantities.","PeriodicalId":188146,"journal":{"name":"Acta Physica Sinica (overseas Edition)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica (overseas Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1004-423X/8/10/001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, first of all, we proved if the ideal Bose gas with a finite volume and number of particles has a non-degenerate single-particle energy level n, the chemical potential μ can take the value μn = n and there is a phase transition temperature Tp,n, where n = 0,1,2 Taking 0 ≤ n Tp,n+1. When the temperature T > Tp,n or T ≤ Tp,n+1, μ # n and the most probable occupation number Nn = 0. In the temperature interval Tp,n ≥ T > Tp,n+1, μ = n and 0 ≤ Nn = N - NjsupNn, where Nj is the most probable occupation number in the degenerate level j. Thus, if the finite ideal Bose gas has some non-degenerate single-particle levels, there exists a characteristic temperature Tp = Tp,0. The chemical potential μ is quantized when T ≤ Tp, and this leads to the creation of a macroscopic quantum state (pure state) or Bose-Einstein condensation phase. Tp = Tp,0 is a first-order phase transition point, Tp,n#0 is a zero-order phase transition point. Next, we obtained a new expression of the most probable distribution of the finite ideal Bose gas. In this expression Nj is directly proportional to gj - 1, where gj and Nj are, respectively, the degeneracy and the most probable occupation number in the degenerate level j. This property agrees with what chemical potential can be quantized if there is a non-degenerate level for the finite ideal Bose gas. Finally, using this expression, we defined a micro-partition function M, obtained the statistical expressions of some thermodynamical quantities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学势量子化和玻色-爱因斯坦凝聚
本文首先证明了体积有限粒子数有限的理想玻色气体具有非简并单粒子能级n时,化学势μ可取μn = n,存在相变温度Tp,n,其中n = 0,1,2取0≤n Tp,n+1;当温度T > Tp、n或T≤Tp、n+1、μ # n且最可能职业数Nn = 0时。在温度区间Tp,n≥T > Tp,n+1, μ = n和0≤Nn = n- NjsupNn,其中Nj是简并能级j中最可能的占位数。因此,如果有限理想玻色气体存在一些非简并单粒子能级,则存在一个特征温度Tp = Tp,0。当T≤Tp时,化学势μ被量子化,这导致宏观量子态(纯态)或玻色-爱因斯坦凝聚相的产生。Tp = Tp,0为一阶相变点,Tp,n#0为零阶相变点。其次,我们得到了有限理想玻色气体最可能分布的新表达式。在这个表达式中,Nj与gj - 1成正比,其中gj和Nj分别是简并能级j中的简并数和最可能的占据数。这一性质与有限理想玻色气体存在非简并能级时可以量子化的化学势一致。最后,利用该表达式定义了微配分函数M,得到了一些热力学量的统计表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New bäcklund transformation and exact solutions for variable coefficient KdV equation Tomography formula for biochemical imaging of thin tissue with diffuse-photon density waves A NEW STRATEGY OF CHAOS CONTROL AND A UNIFIED MECHANISM FOR SEVERAL KINDS OF CHAOS CONTROL METHODS Contribution from moldcular field to the temperature dependence of tunneling magnetoresistance Interface shape and concentration distribution in crystallization from solution under microgravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1