Line Matching and Pose Estimation for Unconstrained Model-to-Image Alignment

K. Bhat, J. Heikkilä
{"title":"Line Matching and Pose Estimation for Unconstrained Model-to-Image Alignment","authors":"K. Bhat, J. Heikkilä","doi":"10.1109/3DV.2014.27","DOIUrl":null,"url":null,"abstract":"This paper has two contributions in the context of line based camera pose estimation, 1) We propose a purely geometric approach to establish correspondence between 3D line segments in a given model and 2D line segments detected in an image, 2) We eliminate a degenerate case due to the type of rotation representation in arguably the best line based pose estimation method currently available. For establishing line correspondences we perform exhaustive search on the space of camera pose values till we obtain a pose (position and rotation) which is geometrically consistent with the given set of 2D, 3D lines. For this highly complex search we design a strategy which performs precomputations on the 3D model using separate set of constraints on position and rotation values. During runtime, the set of different rotation values are ranked independently and combined with each position values in the order of their ranking. Then successive geometric constraints which are much simpler when compared to computing reprojection error are used to eliminate incorrect pose values. We show that the ranking of rotation values reduces the number of trials needed by a huge factor and the simple geometric constraints avoid the need for computing the reprojection error in most cases. Though the execution time for the current MATLAB implementation is far from real time requirement, our method can be accelerated significantly by exploiting simplicity and parallelizability of the operations we employ. For eliminating the degenerate case in the state of art pose estimation method, we reformulate the rotation representation. We use unit quaternions instead of CGR parameters used by the method.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper has two contributions in the context of line based camera pose estimation, 1) We propose a purely geometric approach to establish correspondence between 3D line segments in a given model and 2D line segments detected in an image, 2) We eliminate a degenerate case due to the type of rotation representation in arguably the best line based pose estimation method currently available. For establishing line correspondences we perform exhaustive search on the space of camera pose values till we obtain a pose (position and rotation) which is geometrically consistent with the given set of 2D, 3D lines. For this highly complex search we design a strategy which performs precomputations on the 3D model using separate set of constraints on position and rotation values. During runtime, the set of different rotation values are ranked independently and combined with each position values in the order of their ranking. Then successive geometric constraints which are much simpler when compared to computing reprojection error are used to eliminate incorrect pose values. We show that the ranking of rotation values reduces the number of trials needed by a huge factor and the simple geometric constraints avoid the need for computing the reprojection error in most cases. Though the execution time for the current MATLAB implementation is far from real time requirement, our method can be accelerated significantly by exploiting simplicity and parallelizability of the operations we employ. For eliminating the degenerate case in the state of art pose estimation method, we reformulate the rotation representation. We use unit quaternions instead of CGR parameters used by the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无约束模型-图像对齐的直线匹配和姿态估计
本文在基于线的相机姿态估计方面有两个贡献,1)我们提出了一种纯几何方法来建立给定模型中的3D线段与图像中检测到的2D线段之间的对应关系,2)我们消除了由于旋转表示类型而导致的退化情况,这可以说是目前可用的最佳基于线的姿态估计方法。为了建立线对应关系,我们对相机姿态值的空间进行穷举搜索,直到我们获得与给定的2D, 3D线条集几何上一致的姿态(位置和旋转)。对于这种高度复杂的搜索,我们设计了一种策略,该策略使用位置和旋转值的单独约束集对3D模型执行预计算。在运行时,不同旋转值的集合独立排序,并按照排序顺序与每个位置值组合。然后,使用比计算重投影误差简单得多的连续几何约束来消除不正确的位姿值。我们证明旋转值的排序大大减少了所需的试验次数,并且在大多数情况下,简单的几何约束避免了计算重投影误差的需要。虽然目前MATLAB实现的执行时间远未达到实时要求,但我们的方法可以通过利用我们使用的操作的简单性和并行性来显着加速。为了消除现有姿态估计方法中的退化情况,我们对旋转表示进行了重新表述。我们使用单位四元数代替方法使用的CGR参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1