D. Lust, Paul Rößner, Marcus Brennenstuhl, E. Klemm, B. Plietker, U. Eicker
{"title":"Decentralized city district hydrogen storage system based on the electrochemical reduction of carbon dioxide to formate","authors":"D. Lust, Paul Rößner, Marcus Brennenstuhl, E. Klemm, B. Plietker, U. Eicker","doi":"10.2991/ires-19.2019.17","DOIUrl":null,"url":null,"abstract":"High fluctuations of renewable energy sources, such as wind and solar energy, require storage capacity to maintain supply reliability. For long term storage energy carriers to substitute fossil fuels must be found. The reduction of carbon dioxide to liquid substances such as formic acid or formate with electrons from renewable energy sources seem to be a promising approach. This paper tries to find answers for the following question: Under which conditions is it possible to use electrochemical carbon dioxide reduction to formate as urban seasonal energy storage?","PeriodicalId":424726,"journal":{"name":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ires-19.2019.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High fluctuations of renewable energy sources, such as wind and solar energy, require storage capacity to maintain supply reliability. For long term storage energy carriers to substitute fossil fuels must be found. The reduction of carbon dioxide to liquid substances such as formic acid or formate with electrons from renewable energy sources seem to be a promising approach. This paper tries to find answers for the following question: Under which conditions is it possible to use electrochemical carbon dioxide reduction to formate as urban seasonal energy storage?