A Similarity-Based Remaining Useful Life Prediction Method for Aero Engines with Small Smples

Keying Huang, Rui Bai, Jin Ji, Jun Zhao, Wen-ning Yan
{"title":"A Similarity-Based Remaining Useful Life Prediction Method for Aero Engines with Small Smples","authors":"Keying Huang, Rui Bai, Jin Ji, Jun Zhao, Wen-ning Yan","doi":"10.1109/ACAIT56212.2022.10137884","DOIUrl":null,"url":null,"abstract":"As the power system of an aircraft, accurate prediction of the remaining useful life (RUL) of an aero-engine is of great importance to ensure the flight safety of the aircraft. However, existing methods are all data-driven-based, and such methods are extremely demanding in terms of data volume. To address the problem of insufficient engine data, this paper proposes a similarity-based method for predicting the life of small-sample aircraft engines. Firstly, the KPCA method is used to model the engine degradation trajectory, then a simple and effective method is proposed to determine the degradation start moment of each engine, and finally the similarity between each training sample and the test sample is determined based on the trained KPCA model, and then the remaining life of the test sample is estimated. Experiments show that the method proposed in this paper is effective in predicting the remaining life of an engine under the condition of small samples.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the power system of an aircraft, accurate prediction of the remaining useful life (RUL) of an aero-engine is of great importance to ensure the flight safety of the aircraft. However, existing methods are all data-driven-based, and such methods are extremely demanding in terms of data volume. To address the problem of insufficient engine data, this paper proposes a similarity-based method for predicting the life of small-sample aircraft engines. Firstly, the KPCA method is used to model the engine degradation trajectory, then a simple and effective method is proposed to determine the degradation start moment of each engine, and finally the similarity between each training sample and the test sample is determined based on the trained KPCA model, and then the remaining life of the test sample is estimated. Experiments show that the method proposed in this paper is effective in predicting the remaining life of an engine under the condition of small samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性的小样本航空发动机剩余使用寿命预测方法
航空发动机作为飞机的动力系统,其剩余使用寿命的准确预测对保证飞机的飞行安全具有重要意义。然而,现有的方法都是基于数据驱动的,这类方法对数据量的要求非常高。针对发动机数据不足的问题,提出了一种基于相似度的小样本飞机发动机寿命预测方法。首先利用KPCA方法对发动机退化轨迹进行建模,然后提出了一种简单有效的方法来确定每个发动机的退化起始时刻,最后根据训练好的KPCA模型确定每个训练样本与测试样本之间的相似度,然后估计测试样本的剩余寿命。实验表明,本文提出的方法能够有效地预测小样本条件下发动机的剩余寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer with Global and Local Interaction for Pedestrian Trajectory Prediction The Use of Explainable Artificial Intelligence in Music—Take Professor Nick Bryan-Kinns’ “XAI+Music” Research as a Perspective Playing Fight the Landlord with Tree Search and Hidden Information Evaluation Evaluation Method of Innovative Economic Benefits of Enterprise Human Capital Based on Deep Learning An Attribute Contribution-Based K-Nearest Neighbor Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1