Robust Mapping and Localization in Offline 3D Point Cloud Maps

Guo He, Fei Zhang, Xiang Li, Weiwei Shang
{"title":"Robust Mapping and Localization in Offline 3D Point Cloud Maps","authors":"Guo He, Fei Zhang, Xiang Li, Weiwei Shang","doi":"10.1109/ICARM52023.2021.9536181","DOIUrl":null,"url":null,"abstract":"Aiming at the degradation of lidar, we propose a Robust Mapping and Localization (RMAL) method, which combines the classic Extended Kalman Filter (EKF) algorithm with the back-end pose graph optimization for 3D real-time mapping. Utilizing the complementary advantages of multiple sensors, the robustness of the mapping method is enhanced. In addition, we choose to save the feature keyframes and the corresponding optimal pose transformations as the offline map during the mapping process. Cooperating with subsequent mapping again, we can improve the positioning accuracy of the robot in the offline map. Finally, we also conduct experimental tests in different real scenarios, and the results verify the robustness and engineering practicability of the proposed method.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the degradation of lidar, we propose a Robust Mapping and Localization (RMAL) method, which combines the classic Extended Kalman Filter (EKF) algorithm with the back-end pose graph optimization for 3D real-time mapping. Utilizing the complementary advantages of multiple sensors, the robustness of the mapping method is enhanced. In addition, we choose to save the feature keyframes and the corresponding optimal pose transformations as the offline map during the mapping process. Cooperating with subsequent mapping again, we can improve the positioning accuracy of the robot in the offline map. Finally, we also conduct experimental tests in different real scenarios, and the results verify the robustness and engineering practicability of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离线三维点云地图的鲁棒映射和定位
针对激光雷达的退化问题,提出了一种鲁棒映射与定位(RMAL)方法,该方法将经典的扩展卡尔曼滤波(EKF)算法与后端姿态图优化相结合,用于三维实时映射。利用多传感器的优势互补,增强了映射方法的鲁棒性。此外,在映射过程中,我们选择将特征关键帧和相应的最优姿态变换保存为离线映射。再次配合后续的地图绘制,可以提高机器人在离线地图中的定位精度。最后,我们还在不同的真实场景下进行了实验测试,结果验证了所提出方法的鲁棒性和工程实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-model Friction Disturbance Compensation of a Pan-tilt Based on MUAV for Aerial Remote Sensing Application Multi-Modal Attention Guided Real-Time Lane Detection Amphibious Robot with a Novel Composite Propulsion Mechanism Iterative Learning Control of Impedance Parameters for a Soft Exosuit Triple-step Nonlinear Controller with MLFNN for a Lower Limb Rehabilitation Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1