Genetic algorithms for vehicle routing problem in delivery system

K. Uchimura, H. Sakaguchi, T. Nakashima
{"title":"Genetic algorithms for vehicle routing problem in delivery system","authors":"K. Uchimura, H. Sakaguchi, T. Nakashima","doi":"10.1109/VNIS.1994.396825","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<<ETX>>","PeriodicalId":338322,"journal":{"name":"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNIS.1994.396825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配送系统中车辆路径问题的遗传算法
遗传算法是一种模拟自然进化机制的组合优化学习新范式。作者尝试将遗传算法应用于车辆路径问题。在世代交替的过程中,很容易产生相同的基因,因此人们担心解决方案会陷入局部最小值。作者提出了一种不允许基因重叠的新方法。在数字道路地图上进行了一些实验。结果表明,遗传算法能有效地找到最优解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced coordination between a traffic control center and its supporting units Experimental analysis approach to analyze dynamic route choice behavior of driver with travel time information Mobile data communications and electronic data interchange for small and medium size road transport enterprises in Europe: the METAFORA pilots Reactive user optimum and predictive user optimum in dynamic traffic assignment Incident prediction by fuzzy image sequence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1