{"title":"An Integrated Risk Assessment and Collision Avoidance Methodology for an Autonomous Catamaran with Fuzzy Weighting Functions","authors":"Pouria Sarhadi, W. Naeem, N. Athanasopoulos","doi":"10.1109/Control55989.2022.9781453","DOIUrl":null,"url":null,"abstract":"Collision avoidance and risk assessment are open problems to be practically addressed in maritime transportation. In high-speed vessels this problem becomes more challenging due to manoeuvring and reaction time constraints. Here, a reactive collision avoidance and risk assessment technique with fuzzy weighting functions are proposed for a relatively high-speed autonomous catamaran. To follow paths between predefined waypoints, a Line of Sight (LOS) technique with Cross Tracking Error (CTE) is utilised. Besides, a new collision risk index is introduced based on fuzzy weighting functions. To perform formal maritime decision making, the standard marine COLlision REGulations (COLREGs) are incorporated into the algorithm. Furthermore, a simplified Closest Point of Approach (CPA) formulation is presented. The proposed framework is simulated on a realistic model of a vessel including input and non-holonomic constraints and disturbances. Simulation results for various encounter scenarios demonstrate the merits of the proposed method.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Collision avoidance and risk assessment are open problems to be practically addressed in maritime transportation. In high-speed vessels this problem becomes more challenging due to manoeuvring and reaction time constraints. Here, a reactive collision avoidance and risk assessment technique with fuzzy weighting functions are proposed for a relatively high-speed autonomous catamaran. To follow paths between predefined waypoints, a Line of Sight (LOS) technique with Cross Tracking Error (CTE) is utilised. Besides, a new collision risk index is introduced based on fuzzy weighting functions. To perform formal maritime decision making, the standard marine COLlision REGulations (COLREGs) are incorporated into the algorithm. Furthermore, a simplified Closest Point of Approach (CPA) formulation is presented. The proposed framework is simulated on a realistic model of a vessel including input and non-holonomic constraints and disturbances. Simulation results for various encounter scenarios demonstrate the merits of the proposed method.