Salient Object Detection based Aircraft Detection for Optical Remote Sensing Images

Jay Ram Deepak Tummidi, Rutwij S. Kamble, Sahiesh Bakliwal, Arpan Desai, Bhagyashree V. Lad, A. Keskar
{"title":"Salient Object Detection based Aircraft Detection for Optical Remote Sensing Images","authors":"Jay Ram Deepak Tummidi, Rutwij S. Kamble, Sahiesh Bakliwal, Arpan Desai, Bhagyashree V. Lad, A. Keskar","doi":"10.1109/PCEMS58491.2023.10136078","DOIUrl":null,"url":null,"abstract":"Nowadays the use of Optical remote sensing images (RSIs) for detecting any particular object is being increased.Salient object detection is a fascinating aspect of optical RSIs (SOD). Regarding optical RSIs, there are a plethora of problems, like crowded backdrops, diverse object orientations, different object scales, etc. As a result, the execution of the current salient object detection models frequently suffers greatly. The relevance of information about edges, which is essential for producing correct saliency maps, is frequently overlooked by existing SOD models. To overcome this issue, this model uses Spatial Channel Attention U-Net (SCAU-Net) for detecting the edge maps. This model pop-out aircraft in optical RSIs using SOD. First, the input is sent into Encoder and SCAUNet simultaneously. The SCAU-Net provides salient edge cues and the encoders are used to give a good feature representation for salient objects. Then the output of the encoder is sent to the decoders. The decoders of the feature-merge module gives position attention to salient objects. The efficient edge map provided by SCAU-Net is used for improving the position attention cues. The final step is to combine all position attention cues to obtain the final output. The final output contains the aircraft detected in it. By seeing the obtained results we can say that our model can precisely and accurately detect the aircrafts present in the given input.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays the use of Optical remote sensing images (RSIs) for detecting any particular object is being increased.Salient object detection is a fascinating aspect of optical RSIs (SOD). Regarding optical RSIs, there are a plethora of problems, like crowded backdrops, diverse object orientations, different object scales, etc. As a result, the execution of the current salient object detection models frequently suffers greatly. The relevance of information about edges, which is essential for producing correct saliency maps, is frequently overlooked by existing SOD models. To overcome this issue, this model uses Spatial Channel Attention U-Net (SCAU-Net) for detecting the edge maps. This model pop-out aircraft in optical RSIs using SOD. First, the input is sent into Encoder and SCAUNet simultaneously. The SCAU-Net provides salient edge cues and the encoders are used to give a good feature representation for salient objects. Then the output of the encoder is sent to the decoders. The decoders of the feature-merge module gives position attention to salient objects. The efficient edge map provided by SCAU-Net is used for improving the position attention cues. The final step is to combine all position attention cues to obtain the final output. The final output contains the aircraft detected in it. By seeing the obtained results we can say that our model can precisely and accurately detect the aircrafts present in the given input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于显著目标检测的光学遥感图像飞机检测
目前,光学遥感图像(rsi)用于检测任何特定目标的使用正在增加。显著目标检测是光学RSIs (SOD)的一个引人注目的方面。对于光学rsi,存在大量的问题,如拥挤的背景,不同的对象方向,不同的对象尺度等。因此,当前显著目标检测模型的执行往往受到很大影响。边缘信息的相关性对于生成正确的显著性图至关重要,但现有的SOD模型经常忽略了这一点。为了克服这一问题,该模型使用空间通道注意力U-Net (SCAU-Net)来检测边缘地图。该模型采用超氧化物歧化酶(SOD)在光学rsi中弹出飞机。首先,将输入同时发送到Encoder和SCAUNet。SCAU-Net提供显著边缘线索,编码器用于为显著对象提供良好的特征表示。然后编码器的输出被发送到解码器。特征合并模块的解码器对显著对象给予位置关注。利用SCAU-Net提供的高效边缘映射来改进位置注意提示。最后一步是结合所有的位置注意提示来获得最终的输出。最后的输出包含其中检测到的飞机。通过观察得到的结果,我们可以说我们的模型可以精确地检测给定输入中的飞机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1