Analysis vs Synthesis-based Regularization for Combined Compressed Sensing and Parallel MRI Reconstruction at 7 Tesla

Hamza Cherkaoui, L. Gueddari, C. Lazarus, A. Grigis, F. Poupon, A. Vignaud, S. Farrens, Jean-Luc Starck, P. Ciuciu
{"title":"Analysis vs Synthesis-based Regularization for Combined Compressed Sensing and Parallel MRI Reconstruction at 7 Tesla","authors":"Hamza Cherkaoui, L. Gueddari, C. Lazarus, A. Grigis, F. Poupon, A. Vignaud, S. Farrens, Jean-Luc Starck, P. Ciuciu","doi":"10.23919/EUSIPCO.2018.8553476","DOIUrl":null,"url":null,"abstract":"Compressed Sensing (CS) has allowed a significant reduction of acquisition times in MRI, especially in the high spatial resolution (e.g., 400 $\\mu{\\mathrm{m}}$) context. Nonlinear CS reconstruction usually relies on analysis (e.g., Total Variation) or synthesis (e.g., wavelet) based priors and $\\ell_{1}$ regularization to promote sparsity in the transform domain. Here, we compare the performance of several orthogonal wavelet transforms with those of tight frames for MR image reconstruction in the CS setting combined with parallel imaging (multiple receiver coil). We show that overcomplete dictionaries such as the fast curvelet transform provide improved image quality as compared to orthogonal transforms. For doing so, we rely on an analysis-based formulation where the underlying $\\ell_{1}$ regularized criterion is minimized using a primal dual splitting method (e.g., Condat-V $\\tilde{u}$ algorithm). Validation is performed on ex-vivo baboon brain $T^{*}_{2}$ MRI data collected at 7 Tesla and restrospectively under-sampled using non-Cartesian schemes (radial and Sparkling). We show that multiscale analysis priors based on tight frames instead of orthogonal transforms achieve better image quality (pSNR, SSIM) in particular at low signal-to-noise ratio.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Compressed Sensing (CS) has allowed a significant reduction of acquisition times in MRI, especially in the high spatial resolution (e.g., 400 $\mu{\mathrm{m}}$) context. Nonlinear CS reconstruction usually relies on analysis (e.g., Total Variation) or synthesis (e.g., wavelet) based priors and $\ell_{1}$ regularization to promote sparsity in the transform domain. Here, we compare the performance of several orthogonal wavelet transforms with those of tight frames for MR image reconstruction in the CS setting combined with parallel imaging (multiple receiver coil). We show that overcomplete dictionaries such as the fast curvelet transform provide improved image quality as compared to orthogonal transforms. For doing so, we rely on an analysis-based formulation where the underlying $\ell_{1}$ regularized criterion is minimized using a primal dual splitting method (e.g., Condat-V $\tilde{u}$ algorithm). Validation is performed on ex-vivo baboon brain $T^{*}_{2}$ MRI data collected at 7 Tesla and restrospectively under-sampled using non-Cartesian schemes (radial and Sparkling). We show that multiscale analysis priors based on tight frames instead of orthogonal transforms achieve better image quality (pSNR, SSIM) in particular at low signal-to-noise ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
7特斯拉压缩感知与MRI并行重建的分析与综合正则化
压缩感知(CS)可以显著减少MRI的采集时间,特别是在高空间分辨率(例如400 $\mu{\mathrm{m}}$)的情况下。非线性CS重构通常依赖于基于先验的分析(如Total Variation)或综合(如小波)和$\ell_{1}$正则化来提高变换域的稀疏性。在这里,我们比较了几个正交小波变换与紧帧小波变换在CS设置下结合并行成像(多个接收器线圈)的磁共振图像重建的性能。我们表明,与正交变换相比,像快速曲线变换这样的过完备字典提供了更好的图像质量。为此,我们依赖于基于分析的公式,其中使用原始对偶分裂方法(例如,Condat-V $\tilde{u}$算法)最小化底层$\ell_{1}$正则化标准。在离体狒狒大脑$T^{*}_{2}$上进行验证,在7特斯拉采集MRI数据,并使用非笛卡尔格式(径向和气泡)回顾性欠采样。我们证明了基于紧帧的多尺度分析先验而不是正交变换可以获得更好的图像质量(pSNR, SSIM),特别是在低信噪比下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1