The Bat Algorithm with Dynamic Niche Radius for Multimodal Optimization

Takuya Iwase, R. Takano, Fumito Uwano, Hiroyuki Sato, K. Takadama
{"title":"The Bat Algorithm with Dynamic Niche Radius for Multimodal Optimization","authors":"Takuya Iwase, R. Takano, Fumito Uwano, Hiroyuki Sato, K. Takadama","doi":"10.1145/3325773.3325776","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed Bat Algorithm extending with Dynamic Niche Radius (DNRBA) which enables solutions to locate multiple local and global optima for solving multimodal optimization problems. This proposed algorithm is designed Bat Algorithm (BA) dealing with the exploration and the exploitation search with Niche Radius which is calculated by the fitness landscape and the number of local and global optima to avoid converging solutions at the same optimum. Although the Niche Radius is an effective niching method for locating solutions at the peaks in the fitness landscape, it is not applicable for uneven multimodal functions and easily fails to keep multiple optima. To overcome this problem, we introduce a dynamic niche sharing scheme which is able to adjust the distance of the niche radius in the search process dynamically for the BA. In the experiment, we employ several multimodal functions and compare DNRBA with the conventional BA to evaluate the performance of DNRBA.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed Bat Algorithm extending with Dynamic Niche Radius (DNRBA) which enables solutions to locate multiple local and global optima for solving multimodal optimization problems. This proposed algorithm is designed Bat Algorithm (BA) dealing with the exploration and the exploitation search with Niche Radius which is calculated by the fitness landscape and the number of local and global optima to avoid converging solutions at the same optimum. Although the Niche Radius is an effective niching method for locating solutions at the peaks in the fitness landscape, it is not applicable for uneven multimodal functions and easily fails to keep multiple optima. To overcome this problem, we introduce a dynamic niche sharing scheme which is able to adjust the distance of the niche radius in the search process dynamically for the BA. In the experiment, we employ several multimodal functions and compare DNRBA with the conventional BA to evaluate the performance of DNRBA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态优化的动态生态位半径Bat算法
本文提出了基于动态生态位半径(DNRBA)的Bat算法,该算法使解能够定位多个局部和全局最优解来求解多模态优化问题。该算法采用蝙蝠算法(Bat algorithm, BA),利用生态位半径(Niche Radius)进行探索和开发搜索,该生态位半径由适应度景观以及局部和全局最优解的数量计算,以避免在同一最优解处收敛。虽然小生境半径是一种有效的定位适应度景观中峰值解的小生境方法,但它不适用于不均匀的多模态函数,容易无法保持多个最优。为了克服这一问题,我们引入了一种动态生态位共享方案,该方案能够动态地调整BA在搜索过程中生态位半径的距离。在实验中,我们使用了多个多模态函数,并将DNRBA与传统的BA进行了比较,以评估DNRBA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Online Password Guessing Method Based on Big Data Feature-Weighted Fuzzy K-Modes Clustering Epilepsy Detection in EEG Signal using Recurrent Neural Network Analysis of Ant Colony Optimization on a Dynamically Changing Optical Burst Switched Network with Impairments Gaussian Process Dynamical Autoencoder Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1