Solar irradiance forecasting using wavelet neural network

C. L. Dewangan, S. Singh, S. Chakrabarti
{"title":"Solar irradiance forecasting using wavelet neural network","authors":"C. L. Dewangan, S. Singh, S. Chakrabarti","doi":"10.1109/APPEEC.2017.8308987","DOIUrl":null,"url":null,"abstract":"Short-term solar power forecasting is vital for reliable and secure operation of power systems with high PV penetration. This paper implements wavelet neural network (WNN) with Levenberg-Marquardt (LM) training for solar irradiance forecasting for finding the solar power output. It employs wavelets basis as activation functions whose shapes are adaptive in nature. The proposed model has better generalization capability and more accuracy than the conventional sigmoidal neural network (SNN). The outcomes demonstrate that the model can be implemented easily and can enhance the forecasting accuracy.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Short-term solar power forecasting is vital for reliable and secure operation of power systems with high PV penetration. This paper implements wavelet neural network (WNN) with Levenberg-Marquardt (LM) training for solar irradiance forecasting for finding the solar power output. It employs wavelets basis as activation functions whose shapes are adaptive in nature. The proposed model has better generalization capability and more accuracy than the conventional sigmoidal neural network (SNN). The outcomes demonstrate that the model can be implemented easily and can enhance the forecasting accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小波神经网络预测太阳辐照度
太阳能发电短期预测对于高光伏发电渗透率的电力系统的可靠、安全运行至关重要。本文将小波神经网络(WNN)与Levenberg-Marquardt (LM)训练相结合,用于太阳辐照度预测,以求出太阳功率输出。它采用小波基作为自适应的激活函数。与传统的s型神经网络相比,该模型具有更好的泛化能力和更高的精度。结果表明,该模型易于实现,可提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel modulation strategy for active rectification of a snubber less soft-switched single stage 30 high frequency link DC-AC converter Implementation of social spider optimization for optimized hydel-thermic operational delineation Frequency Response Analysis (FRA) in power transformers: An approach to locate inter-disk SC fault Fault estimation with analytical cable model for MMC-HVDC in offshore applications Modified current control technique for grid synchronization in voltage source converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1