Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting

Shuzheng Si, Shuang Zeng, Baobao Chang
{"title":"Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting","authors":"Shuzheng Si, Shuang Zeng, Baobao Chang","doi":"10.18653/v1/2022.naacl-main.356","DOIUrl":null,"url":null,"abstract":"Incomplete utterance rewriting has recently raised wide attention. However, previous works do not consider the semantic structural information between incomplete utterance and rewritten utterance or model the semantic structure implicitly and insufficiently. To address this problem, we propose a QUEry-Enhanced Network(QUEEN) to solve this problem. Firstly, our proposed query template explicitly brings guided semantic structural knowledge between the incomplete utterance and the rewritten utterance making model perceive where to refer back to or recover omitted tokens. Then, we adopt a fast and effective edit operation scoring network to model the relation between two tokens. Benefiting from extra information and the well-designed network, QUEEN achieves state-of-the-art performance on several public datasets.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.naacl-main.356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Incomplete utterance rewriting has recently raised wide attention. However, previous works do not consider the semantic structural information between incomplete utterance and rewritten utterance or model the semantic structure implicitly and insufficiently. To address this problem, we propose a QUEry-Enhanced Network(QUEEN) to solve this problem. Firstly, our proposed query template explicitly brings guided semantic structural knowledge between the incomplete utterance and the rewritten utterance making model perceive where to refer back to or recover omitted tokens. Then, we adopt a fast and effective edit operation scoring network to model the relation between two tokens. Benefiting from extra information and the well-designed network, QUEEN achieves state-of-the-art performance on several public datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从不完整话语中挖掘线索:一个用于不完整话语重写的查询增强网络
不完全话语改写近年来引起了广泛关注。然而,以往的研究没有充分考虑不完整话语和改写话语之间的语义结构信息,也没有对语义结构进行隐式建模。为了解决这个问题,我们提出了一个查询增强网络(QUEEN)来解决这个问题。首先,我们提出的查询模板明确地在不完整的话语和重写的话语之间引入了引导语义结构知识,使模型感知到在哪里引用或恢复遗漏的标记。然后,我们采用快速有效的编辑操作评分网络对两个令牌之间的关系进行建模。受益于额外的信息和精心设计的网络,QUEEN在几个公共数据集上实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Digital Market: E-Commerce Application For Farmers
M. Bhende, M. Avatade, Suvarna Patil, Pooja Mishra, P. Prasad, Shubham Shewalkar
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Synthetic Data for Back Translation Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting Using Paraphrases to Study Properties of Contextual Embeddings GMN: Generative Multi-modal Network for Practical Document Information Extraction Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1