{"title":"Research on Strength, Alkali-Silica Reaction and Abrasion Resistance of Concrete with Cathode Ray Tube Glass Sand","authors":"S. Yildirim","doi":"10.5772/INTECHOPEN.73873","DOIUrl":null,"url":null,"abstract":"In this study, the effects on the mechanical and durability properties of concrete with cathode ray tube glass sand (CRTS) obtained by recycling the screens of cathode ray tubes (CRTs) were investigated. CRTS was used by the ratios of 5, 10, 15, and 20% in the concrete. The unit weight, workability, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, static and dynamic elastic moduli, abrasion resistance, and alkali-silica reaction (ASR) expansion tests on the concrete were examined. The use of CRTS improved specific properties of concrete according to the fraction of glass aggregate used between 0 and 20%. Plain concrete (P) and CRTS of 5% in concrete gave better results in terms of mechanical properties. Use of CRTS above 5% in concrete declined the mechanical properties but on the 90th day, CRTS concrete reduced the difference. CRTS up to 20% in concrete especially improved abrasion resistance in comparison to P without CRTS; furthermore, this addition did not increase ASR expansion to a deleterious level. The present study investigated the effects of substituting various amounts of CRT glass for fine aggregates in concrete on the following physical, mechanical, and durability properties: unit weight, workability, water absorption, compressive and flexural strength, ultrasonic pulse velocity, static and dynamic elastic moduli, abrasion, and ASR expansion. The crushed sand replacement by cathode ray tube glass sand (CRTS) constituted 5, 10, 15, and 20% by weight of the total aggregate.","PeriodicalId":191588,"journal":{"name":"Sustainable Buildings - Interaction Between a Holistic Conceptual Act and Materials Properties","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Buildings - Interaction Between a Holistic Conceptual Act and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this study, the effects on the mechanical and durability properties of concrete with cathode ray tube glass sand (CRTS) obtained by recycling the screens of cathode ray tubes (CRTs) were investigated. CRTS was used by the ratios of 5, 10, 15, and 20% in the concrete. The unit weight, workability, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, static and dynamic elastic moduli, abrasion resistance, and alkali-silica reaction (ASR) expansion tests on the concrete were examined. The use of CRTS improved specific properties of concrete according to the fraction of glass aggregate used between 0 and 20%. Plain concrete (P) and CRTS of 5% in concrete gave better results in terms of mechanical properties. Use of CRTS above 5% in concrete declined the mechanical properties but on the 90th day, CRTS concrete reduced the difference. CRTS up to 20% in concrete especially improved abrasion resistance in comparison to P without CRTS; furthermore, this addition did not increase ASR expansion to a deleterious level. The present study investigated the effects of substituting various amounts of CRT glass for fine aggregates in concrete on the following physical, mechanical, and durability properties: unit weight, workability, water absorption, compressive and flexural strength, ultrasonic pulse velocity, static and dynamic elastic moduli, abrasion, and ASR expansion. The crushed sand replacement by cathode ray tube glass sand (CRTS) constituted 5, 10, 15, and 20% by weight of the total aggregate.