Design of a robust receiver architecture for scintillation monitoring

M. Susi, M. Aquino, R. Romero, F. Dovis, M. Andreotti
{"title":"Design of a robust receiver architecture for scintillation monitoring","authors":"M. Susi, M. Aquino, R. Romero, F. Dovis, M. Andreotti","doi":"10.1109/PLANS.2014.6851359","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite Systems (GNSS) signals traversing small scale irregularities present in the ionosphere may experience fast and unpredictable fluctuations of their amplitude and phase. This phenomenon can seriously affect the performance of a GNSS receiver, decreasing the position accuracy and, in the worst scenario, also inducing a total loss of lock on the satellite signals. This paper proposes an adaptive Kalman Filter (KF) based Phase Locked Loop (PLL) to cope with high dynamics and strong fading induced by ionospheric scintillation events. The KF based PLL self-tunes the covariance matrix according to the detected scintillation level. Furthermore, the paper shows that radio frequency interference can affect the reliable computation of scintillation parameters. In order to mitigate the effect of the interference signal and filter it out, a wavelet based interference mitigation algorithm has been also implemented. The latter is able to retrieve genuine scintillation indices that otherwise would be corrupted by radio frequency interference.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Global Navigation Satellite Systems (GNSS) signals traversing small scale irregularities present in the ionosphere may experience fast and unpredictable fluctuations of their amplitude and phase. This phenomenon can seriously affect the performance of a GNSS receiver, decreasing the position accuracy and, in the worst scenario, also inducing a total loss of lock on the satellite signals. This paper proposes an adaptive Kalman Filter (KF) based Phase Locked Loop (PLL) to cope with high dynamics and strong fading induced by ionospheric scintillation events. The KF based PLL self-tunes the covariance matrix according to the detected scintillation level. Furthermore, the paper shows that radio frequency interference can affect the reliable computation of scintillation parameters. In order to mitigate the effect of the interference signal and filter it out, a wavelet based interference mitigation algorithm has been also implemented. The latter is able to retrieve genuine scintillation indices that otherwise would be corrupted by radio frequency interference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于闪烁监测的鲁棒接收机结构设计
全球导航卫星系统(GNSS)信号穿过电离层中存在的小尺度不规则现象时,其幅度和相位可能出现快速和不可预测的波动。这种现象会严重影响GNSS接收机的性能,降低定位精度,在最坏的情况下,还会导致卫星信号完全失去锁定。针对电离层闪烁事件引起的高动态和强衰落,提出了一种基于自适应卡尔曼滤波(KF)的锁相环(PLL)。基于KF的锁相环根据检测到的闪烁电平自调谐协方差矩阵。此外,本文还表明射频干扰会影响闪烁参数的可靠计算。为了减轻干扰信号的影响并将其滤除,本文还实现了一种基于小波的干扰抑制算法。后者能够检索真实的闪烁指数,否则将被射频干扰破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A blueprint for civil GPS navigation message authentication Standalone inertial pocket navigation system Anchor-free localization using round-trip delay measurements for martian swarm exploration A novel local integrity concept for GNSS receivers in urban vehicular contexts The improved spatial nuller with frequency swept jammer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1