A Discrete-Time Decoupled Current Control Scheme Applied to VSC-Based Three-Phase Three-Line Systems

Hui Wang, Qingmin Li, Guangzhu Wang, Xingguo Tan
{"title":"A Discrete-Time Decoupled Current Control Scheme Applied to VSC-Based Three-Phase Three-Line Systems","authors":"Hui Wang, Qingmin Li, Guangzhu Wang, Xingguo Tan","doi":"10.1155/2011/605043","DOIUrl":null,"url":null,"abstract":"Accurate current control of the voltage source converters (VSCs) is one of the key research subjects in modern power electronics. To achieve a preferable solution to current coupling effect in the VSC-based three-phase three-line system, a discrete-time decoupled current control strategy is proposed in the paper. With integration of the α-β transform and two independent current controllers, the proposed methodology can effectively implement decoupled control of the three-phase currents, which can thereby eliminate the impact from the neutral-point voltage especially under asymmetrical loading conditions. Control performance under digital realization was characterized with extensive tests on a shunt active power filter (SAPF) platform. Both the simulative and experimental results have demonstrated that the SAPF could function well and thereby verified the feasibility and effectiveness of the proposed current control methodology.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/605043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate current control of the voltage source converters (VSCs) is one of the key research subjects in modern power electronics. To achieve a preferable solution to current coupling effect in the VSC-based three-phase three-line system, a discrete-time decoupled current control strategy is proposed in the paper. With integration of the α-β transform and two independent current controllers, the proposed methodology can effectively implement decoupled control of the three-phase currents, which can thereby eliminate the impact from the neutral-point voltage especially under asymmetrical loading conditions. Control performance under digital realization was characterized with extensive tests on a shunt active power filter (SAPF) platform. Both the simulative and experimental results have demonstrated that the SAPF could function well and thereby verified the feasibility and effectiveness of the proposed current control methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于vsc的三相三线系统离散时间解耦电流控制方法
电压源变换器的精确电流控制是现代电力电子学的重点研究课题之一。为了更好地解决基于vsc的三相三线系统的电流耦合问题,提出了一种离散时间解耦电流控制策略。结合α-β变换和两个独立的电流控制器,该方法可以有效地实现三相电流的解耦控制,从而消除中性点电压的影响,特别是在不对称负载条件下。在并联型有源电力滤波器(SAPF)平台上进行了大量测试,对数字实现下的控制性能进行了表征。仿真和实验结果均表明,该控制方法能很好地发挥作用,从而验证了所提出的现行控制方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Handling Methods and Comparison for Different DC Breaker Topologies and MMC Topologies of the HVDC System A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels Quantitative Analysis of Efficiency Improvement of a Propulsion Drive by Using SiC Devices: A Case of Study Experimental Verification of a Battery Energy Storage System for Integration with Photovoltaic Generators Sensorless Control of Nonsinusoidal Permanent Magnet Brushless Motor Using Selective Torque Harmonic Elimination Control Method Based on Full-Order Sliding Mode Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1