Work-in-Progress: Accelerated Matrix Factorization by Approximate Computing for Recommendation System

Yining Wu, G. Sai, Shengyu Duan
{"title":"Work-in-Progress: Accelerated Matrix Factorization by Approximate Computing for Recommendation System","authors":"Yining Wu, G. Sai, Shengyu Duan","doi":"10.1109/EMSOFT55006.2022.00014","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) is widely used in collaborative filtering-based recommendation systems, but the computational complexity greatly increases for larger scaled recommendation systems. We propose to accelerate MF by performing approximate matrix multiplications, considering the joint sparsity of the decomposed matrices. We show our method realizes a more than 1.1 speedup with a minimal error, and the speedup can be higher for the recommendation systems with larger scales.","PeriodicalId":371537,"journal":{"name":"2022 International Conference on Embedded Software (EMSOFT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT55006.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix factorization (MF) is widely used in collaborative filtering-based recommendation systems, but the computational complexity greatly increases for larger scaled recommendation systems. We propose to accelerate MF by performing approximate matrix multiplications, considering the joint sparsity of the decomposed matrices. We show our method realizes a more than 1.1 speedup with a minimal error, and the speedup can be higher for the recommendation systems with larger scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于近似计算的推荐系统加速矩阵分解
矩阵分解(Matrix factorization, MF)在基于协同过滤的推荐系统中得到了广泛的应用,但对于规模较大的推荐系统,其计算复杂度会大大增加。考虑到分解矩阵的联合稀疏性,我们建议通过执行近似矩阵乘法来加速MF。我们的方法在最小误差的情况下实现了超过1.1的加速,并且对于规模更大的推荐系统可以实现更高的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Work-in-Progress: Towards a Theory of Robust Quantitative Semantics for Signal Temporal Logic Work in Progress: Dynamic Offloading of Soft Real-time Tasks in SDN-based Fog Computing Environment Industry-track: System-Level Logical Execution Time for Automotive Software Development Welcome Message from the EMSOFT 2022 Program Chairs Work-in-Progress: Accelerated Matrix Factorization by Approximate Computing for Recommendation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1