Discriminative unsupervised learning of structured predictors

Linli Xu, Dana F. Wilkinson, F. Southey, Dale Schuurmans
{"title":"Discriminative unsupervised learning of structured predictors","authors":"Linli Xu, Dana F. Wilkinson, F. Southey, Dale Schuurmans","doi":"10.1145/1143844.1143977","DOIUrl":null,"url":null,"abstract":"We present a new unsupervised algorithm for training structured predictors that is discriminative, convex, and avoids the use of EM. The idea is to formulate an unsupervised version of structured learning methods, such as maximum margin Markov networks, that can be trained via semidefinite programming. The result is a discriminative training criterion for structured predictors (like hidden Markov models) that remains unsupervised and does not create local minima. To reduce training cost, we reformulate the training procedure to mitigate the dependence on semidefinite programming, and finally propose a heuristic procedure that avoids semidefinite programming entirely. Experimental results show that the convex discriminative procedure can produce better conditional models than conventional Baum-Welch (EM) training.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a new unsupervised algorithm for training structured predictors that is discriminative, convex, and avoids the use of EM. The idea is to formulate an unsupervised version of structured learning methods, such as maximum margin Markov networks, that can be trained via semidefinite programming. The result is a discriminative training criterion for structured predictors (like hidden Markov models) that remains unsupervised and does not create local minima. To reduce training cost, we reformulate the training procedure to mitigate the dependence on semidefinite programming, and finally propose a heuristic procedure that avoids semidefinite programming entirely. Experimental results show that the convex discriminative procedure can produce better conditional models than conventional Baum-Welch (EM) training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构化预测器的判别无监督学习
我们提出了一种新的无监督算法,用于训练结构化预测器,该算法具有判别性、凸性,并且避免了EM的使用。其想法是制定结构化学习方法的无监督版本,例如可以通过半确定规划训练的最大边际马尔可夫网络。结果是结构化预测器(如隐马尔可夫模型)的判别训练标准,它仍然是无监督的,并且不会产生局部最小值。为了降低训练成本,我们对训练过程进行了重构,减少了对半确定规划的依赖,最后提出了一种完全避免半确定规划的启发式训练过程。实验结果表明,与传统的Baum-Welch (EM)训练相比,凸判别法可以得到更好的条件模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1