{"title":"Applying Deep Recurrent Neural Network to Predict Vehicle Mobility","authors":"Wei Liu, Y. Shoji","doi":"10.1109/VNC.2018.8628362","DOIUrl":null,"url":null,"abstract":"Sensing data gathering and dissemination is one of the most challenging tasks in smart city construction, and vehicles moving around a city have been widely considered as a good candidate to deliver data efficiently and economically. Hence, this paper proposes a deep recurrent neural network-based algorithm to predict vehicle mobility and facilitate vehicle-based sensing data delivery. Extensive evaluations have been conducted by using a large-scale taxi mobility dataset that is obtained from a smart city testbed deployed in Tokyo, Japan. The results have validated that, compared with the most state-of-art algorithms, our proposal can improve the F1-Score of vehicle mobility prediction by a range of 18.3% ~24.6%.","PeriodicalId":335017,"journal":{"name":"2018 IEEE Vehicular Networking Conference (VNC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2018.8628362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Sensing data gathering and dissemination is one of the most challenging tasks in smart city construction, and vehicles moving around a city have been widely considered as a good candidate to deliver data efficiently and economically. Hence, this paper proposes a deep recurrent neural network-based algorithm to predict vehicle mobility and facilitate vehicle-based sensing data delivery. Extensive evaluations have been conducted by using a large-scale taxi mobility dataset that is obtained from a smart city testbed deployed in Tokyo, Japan. The results have validated that, compared with the most state-of-art algorithms, our proposal can improve the F1-Score of vehicle mobility prediction by a range of 18.3% ~24.6%.