R Markdown: Integrating A Reproducible Analysis Tool into Introductory Statistics

Benjamin S. Baumer, Mine Çetinkaya-Rundel, Andrew Bray, Linda Loi, N. Horton
{"title":"R Markdown: Integrating A Reproducible Analysis Tool into Introductory Statistics","authors":"Benjamin S. Baumer, Mine Çetinkaya-Rundel, Andrew Bray, Linda Loi, N. Horton","doi":"10.5070/T581020118","DOIUrl":null,"url":null,"abstract":"Nolan and Temple Lang argue that \"the ability to express statistical computations is an essential skill.\" A key related capacity is the ability to conduct and present data analysis in a way that another person can understand and replicate. The copy-and-paste workflow that is an artifact of antiquated user-interface design makes reproducibility of statistical analysis more difficult, especially as data become increasingly complex and statistical methods become increasingly sophisticated. R Markdown is a new technology that makes creating fully-reproducible statistical analysis simple and painless. It provides a solution suitable not only for cutting edge research, but also for use in an introductory statistics course. We present evidence that R Markdown can be used effectively in introductory statistics courses, and discuss its role in the rapidly-changing world of statistical computation.","PeriodicalId":413623,"journal":{"name":"arXiv: Other Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5070/T581020118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Nolan and Temple Lang argue that "the ability to express statistical computations is an essential skill." A key related capacity is the ability to conduct and present data analysis in a way that another person can understand and replicate. The copy-and-paste workflow that is an artifact of antiquated user-interface design makes reproducibility of statistical analysis more difficult, especially as data become increasingly complex and statistical methods become increasingly sophisticated. R Markdown is a new technology that makes creating fully-reproducible statistical analysis simple and painless. It provides a solution suitable not only for cutting edge research, but also for use in an introductory statistics course. We present evidence that R Markdown can be used effectively in introductory statistics courses, and discuss its role in the rapidly-changing world of statistical computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R降价:在入门统计中集成一个可重复的分析工具
诺兰和坦普尔·朗认为“表达统计计算的能力是一项基本技能。”一个关键的相关能力是以另一个人可以理解和复制的方式进行和呈现数据分析的能力。复制-粘贴工作流是过时的用户界面设计的产物,这使得统计分析的再现性更加困难,特别是在数据变得越来越复杂和统计方法变得越来越复杂的情况下。R Markdown是一项新技术,它使创建完全可重复的统计分析变得简单而无痛。它提供的解决方案不仅适用于前沿研究,也适用于统计学入门课程。我们提供的证据表明R Markdown可以有效地用于统计学入门课程,并讨论其在快速变化的统计计算世界中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On statistical deficiency: Why the test statistic of the matching method is hopelessly underpowered and uniquely informative The rule of conditional probability is valid in quantum theory [Comment on Gelman & Yao's "Holes in Bayesian statistics"] Popper’s Falsification and Corroboration from the Statistical Perspectives Learning as We Go: An Examination of the Statistical Accuracy of COVID19 Daily Death Count Predictions Exploring the Effects of COVID-19 Containment Policies on Crime: An Empirical Analysis of the Short-term Aftermath in Los Angeles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1