Optimasi Support Vector Mechine (SVM) Menggunakan K-Means dan K-Medoids untuk Klasterisasi Tema Tugas Akhir

Gaffy Patria
{"title":"Optimasi Support Vector Mechine (SVM) Menggunakan K-Means dan K-Medoids untuk Klasterisasi Tema Tugas Akhir","authors":"Gaffy Patria","doi":"10.56347/jics.v1i2.72","DOIUrl":null,"url":null,"abstract":"The large amount of final project document data from study programs at the Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Abulyatama can make a major contribution to the difficulty of the process of grouping a student's final project theme. The clustering process that has been carried out manually so far has been very ineffective and inefficient, so a data mining application is needed to manage the data, especially for clustering the data. The goal to be achieved from writing this thesis is to implement the Support Vector Machine with K-Means and K-Medoids to optimize the final assignment clustering. the results of the Optimization Support Vector Machine (SVM) analysis using K-Means and K-Medoids for Grouping Student Final Project Themes can be concluded in a number of ways, namely; with the K-Means Clustering method it can be seen that there are 23 data mining, 10 networks, 26 artificial intelligence, and 21 websites, and website 11 items.","PeriodicalId":129937,"journal":{"name":"Journal Innovations Computer Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Innovations Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56347/jics.v1i2.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The large amount of final project document data from study programs at the Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Abulyatama can make a major contribution to the difficulty of the process of grouping a student's final project theme. The clustering process that has been carried out manually so far has been very ineffective and inefficient, so a data mining application is needed to manage the data, especially for clustering the data. The goal to be achieved from writing this thesis is to implement the Support Vector Machine with K-Means and K-Medoids to optimize the final assignment clustering. the results of the Optimization Support Vector Machine (SVM) analysis using K-Means and K-Medoids for Grouping Student Final Project Themes can be concluded in a number of ways, namely; with the K-Means Clustering method it can be seen that there are 23 data mining, 10 networks, 26 artificial intelligence, and 21 websites, and website 11 items.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化支持向量Mechine (SVM)使用k -手段和K-Medoids来确定最终任务主题
Sekolah tingi management Informatika dan computer (STMIK) Abulyatama的研究项目中大量的期末项目文档数据可能会对学生的期末项目主题进行分组的过程造成很大的困难。到目前为止,手工执行的聚类过程非常低效,因此需要一个数据挖掘应用程序来管理数据,特别是用于聚类数据。本文的目标是实现具有K-Means和K-Medoids的支持向量机,以优化最终的分配聚类。使用K-Means和k - medioids对学生期末专题主题进行分组的优化支持向量机(SVM)分析结果可以归纳为以下几种方式:使用K-Means聚类方法可以看到,数据挖掘有23个,网络有10个,人工智能有26个,网站有21个,网站有11个项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aplikasi Pemilihan Karyawan Terbaik pada PT. Ql Trimitra dengan Metode Analytical Hierarchy Process (AHP) Sistem Informasi Pelayanan Izin Penelitian pada Badan Kesbangpol Aceh Sistem Penunjang Keputusan Penerimaan Karyawan Baru di PT. Yudita Teratai Cakti Menggunakan Metode Profile Matching Optimasi Support Vector Mechine (SVM) Menggunakan K-Means dan K-Medoids untuk Klasterisasi Tema Tugas Akhir Sistem Informasi Pemilihan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting (SAW) pada Balai Pendidikan dan Pelatihan Ilmu Pelayaran BP2IP Malahayati
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1