Design and Optimizing of Compact Ultra-Wide Band Printed Patch Antenna Employing Different Optimization Algorithms Based on Plant Inspiration

Hussein M. Hathal, A. Abdullah, R. Ali
{"title":"Design and Optimizing of Compact Ultra-Wide Band Printed Patch Antenna Employing Different Optimization Algorithms Based on Plant Inspiration","authors":"Hussein M. Hathal, A. Abdullah, R. Ali","doi":"10.33971/bjes.22.1.10","DOIUrl":null,"url":null,"abstract":"In this paper, a compact ultra-wide band (UWB) printed patch antenna is designed and optimized using four biologically and plant inspired optimization algorithms. These algorithms are the newly adopted Moss Rose Optimization Algorithm (MROA), Runner Root Algorithm (RRA), Sunflower Optimization Algorithm (SFOA) and Particle Swarm Optimization (PSO). These algorithms are modified in an optimizer software, which merges the attributes of the design of electromagnetic environment of CST Microwave Studio with those of the technical programming environment of MATLAB. A compact (12 × 21.5) mm2 printed patch antenna has been proposed and simulated over the whole UWB frequency range using these four optimization algorithms. The simulation results show the superiority of the antenna design using MROA, which has the widest covered frequency range, the lowest reflection coefficient and the lowest standing wave ratio.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.22.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a compact ultra-wide band (UWB) printed patch antenna is designed and optimized using four biologically and plant inspired optimization algorithms. These algorithms are the newly adopted Moss Rose Optimization Algorithm (MROA), Runner Root Algorithm (RRA), Sunflower Optimization Algorithm (SFOA) and Particle Swarm Optimization (PSO). These algorithms are modified in an optimizer software, which merges the attributes of the design of electromagnetic environment of CST Microwave Studio with those of the technical programming environment of MATLAB. A compact (12 × 21.5) mm2 printed patch antenna has been proposed and simulated over the whole UWB frequency range using these four optimization algorithms. The simulation results show the superiority of the antenna design using MROA, which has the widest covered frequency range, the lowest reflection coefficient and the lowest standing wave ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于植物灵感的小型超宽带印刷贴片天线不同优化算法的设计与优化
本文采用四种基于生物和植物的优化算法,设计并优化了一种紧凑型超宽带(UWB)印刷贴片天线。这些算法分别是新采用的Moss Rose Optimization Algorithm (MROA)、Runner Root Algorithm (RRA)、Sunflower Optimization Algorithm (SFOA)和Particle Swarm Optimization (PSO)。这些算法在优化器软件中进行了修改,该优化器将CST Microwave Studio电磁环境的设计属性与MATLAB技术编程环境的设计属性融合在一起。提出了一种小型(12 × 21.5) mm2的印刷贴片天线,并利用这四种优化算法在整个UWB频率范围内进行了仿真。仿真结果表明,采用MROA设计的天线具有覆盖频率范围最宽、反射系数最低、驻波比最低的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Façade Design on Visual Pollution Case study: Peshawa-Qazi Street (100 m) in Erbil A Review of Intelligent Techniques Based Speed Control of Brushless DC Motor (BLDC) Design and Implementation of Smart Petrol Station A Numerical Study of Blade Geometry Effects in a Vertical-Axes Wind Turbines Review on Energy Harvesting from Wind-Induced Column Vibrations: Theories, Mechanisms, and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1