Malicious Code Detection Technology Based on Metadata Machine Learning

Zhongru Wang, P. Cong, Weiqiang Yu
{"title":"Malicious Code Detection Technology Based on Metadata Machine Learning","authors":"Zhongru Wang, P. Cong, Weiqiang Yu","doi":"10.1109/DSC50466.2020.00068","DOIUrl":null,"url":null,"abstract":"The static analysis method plays a very vital role in malicious code detection. In this paper, based on the analysis results of the malicious code PE file, the concept of metadata is proposed, and the prototype of the rapid detection of malicious code, PE-Classifier, is realized. In a spark distributed environment, malicious code can be quickly and accurately classified and detected based on malicious code metadata by using a random forest classification algorithm. The experimental results show that the prototype PE-Classirier can judge the semantic similarity of samples based on the similarity of metadata, and then make the anti-virus software more effective.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The static analysis method plays a very vital role in malicious code detection. In this paper, based on the analysis results of the malicious code PE file, the concept of metadata is proposed, and the prototype of the rapid detection of malicious code, PE-Classifier, is realized. In a spark distributed environment, malicious code can be quickly and accurately classified and detected based on malicious code metadata by using a random forest classification algorithm. The experimental results show that the prototype PE-Classirier can judge the semantic similarity of samples based on the similarity of metadata, and then make the anti-virus software more effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元数据机器学习的恶意代码检测技术
静态分析方法在恶意代码检测中起着至关重要的作用。本文在对恶意代码PE文件分析结果的基础上,提出了元数据的概念,实现了快速检测恶意代码的原型PE分类器。在spark分布式环境下,基于恶意代码元数据,采用随机森林分类算法对恶意代码进行快速、准确的分类和检测。实验结果表明,原型pe - classifier可以根据元数据的相似度判断样本的语义相似度,从而提高杀毒软件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Parallel Algorithm for Graph Transaction Based Frequent Subgraph Mining A Review of APT Attack Detection Methods and Defense Strategies Temperature Prediction Modeling and Control Parameter optimization Based on Data Driven GPU-BTM: A Topic Model for Short Text using Auxiliary Information An APT Attack Analysis Framework Based on Self-define Rules and Mapreduce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1