Adaptive Genetic Algorithm for Improving Prediction Accuracy of a Multi-Criteria Recommender System

Hamada Mohamed, L. Abdulsalam, Hassan Mohammed
{"title":"Adaptive Genetic Algorithm for Improving Prediction Accuracy of a Multi-Criteria Recommender System","authors":"Hamada Mohamed, L. Abdulsalam, Hassan Mohammed","doi":"10.1109/MCSOC2018.2018.00025","DOIUrl":null,"url":null,"abstract":"Recommender systems are software tools used to make valuable recommendations to users. Traditionally, recommender systems use information obtained from ratings of an item by users with similar opinions to make recommendations. A user uses a single rating to represent the degree of likeness of an item in traditional recommender systems. Though this approach has reasonably shown a good prediction accuracy, however, the performance of traditional recommender systems is considered inadequate, as users could have different opinions based on some specific features of an item. Multi-criteria recommendation extends the traditional techniques by incorporating ratings for various attributes of the items. It provides better recommendations for users as the system allows the opportunity for users to specify their preferences based on different attributes of user item, which improves prediction accuracy. In this paper, we proposed an aggregation function based method that uses an adaptive genetic algorithm to efficiently incorporate the criteria ratings for improving the accuracy of the multi-criteria recommender system. We carried out an experiment using a dataset for multi-criteria recommendations of movies to users. The experimental result shows that our proposed approach provides better accuracy than the corresponding traditional technique.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSOC2018.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recommender systems are software tools used to make valuable recommendations to users. Traditionally, recommender systems use information obtained from ratings of an item by users with similar opinions to make recommendations. A user uses a single rating to represent the degree of likeness of an item in traditional recommender systems. Though this approach has reasonably shown a good prediction accuracy, however, the performance of traditional recommender systems is considered inadequate, as users could have different opinions based on some specific features of an item. Multi-criteria recommendation extends the traditional techniques by incorporating ratings for various attributes of the items. It provides better recommendations for users as the system allows the opportunity for users to specify their preferences based on different attributes of user item, which improves prediction accuracy. In this paper, we proposed an aggregation function based method that uses an adaptive genetic algorithm to efficiently incorporate the criteria ratings for improving the accuracy of the multi-criteria recommender system. We carried out an experiment using a dataset for multi-criteria recommendations of movies to users. The experimental result shows that our proposed approach provides better accuracy than the corresponding traditional technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高多准则推荐系统预测精度的自适应遗传算法
推荐系统是一种软件工具,用于向用户提供有价值的推荐。传统上,推荐系统使用具有相似观点的用户对某一商品的评分信息来进行推荐。在传统的推荐系统中,用户使用单个评分来表示物品的相似程度。虽然这种方法已经合理地显示出了良好的预测精度,但是传统推荐系统的性能被认为是不足的,因为用户可能会根据一个项目的某些特定特征产生不同的意见。多标准推荐是对传统技术的扩展,它结合了项目的各种属性的评级。它为用户提供了更好的推荐,因为系统允许用户根据用户项目的不同属性指定他们的偏好,从而提高了预测的准确性。为了提高多标准推荐系统的准确率,提出了一种基于聚合函数的方法,该方法使用自适应遗传算法来有效地整合标准评分。我们进行了一个实验,使用一个数据集向用户推荐多标准的电影。实验结果表明,该方法比传统方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Evaluation of a Configurable Hardware Merge Sorter for Various Output Records On-Line Cost-Aware Workflow Allocation in Heterogeneous Computing Environments Simplified Quadcopter Simulation Model for Spike-Based Hardware PID Controller using SystemC-AMS Search Space Reduction for Parameter Tuning of a Tsunami Simulation on the Intel Knights Landing Processor Unifying Wire and Time Scheduling for Highlevel Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1