Improvement the Performing of Spectrum Distinguishing in Cognitive Radio using MIMO-Alamouti Scheme

Mohamed Ismail Ibrahim, Dina M. Ellaithy
{"title":"Improvement the Performing of Spectrum Distinguishing in Cognitive Radio using MIMO-Alamouti Scheme","authors":"Mohamed Ismail Ibrahim, Dina M. Ellaithy","doi":"10.1109/ICCES48960.2019.9068107","DOIUrl":null,"url":null,"abstract":"This paper exploits the efficient performing of the Multiple Input Multiple Output (MIMO)-Alamouti scheme for spectrum sensing in cognitive radio (CR). Consequently, enhancement in the overall performance and the detection probability by using the MIMO-Alamouti scheme is achieved. Moreover, at low signal-to-noise ratio (SNR), the cooperative spectrum distinguishing algorithm among the different spectrum distinguishing techniques is employed to raise the probability of detection and also solving the hidden node problem. Matlab software is used to simulate the detection probability versus SNR for different schemes. Up to 50% enhancement in detection probability (Pd) as compared with the conventional technique under signal to noise ratio (SNR) equals −15 dB and false alarm probability (Pf) equals 0.1. As compared with the common spectrum sensing approach in case of the majority rule, at least 10% advance in the probability of detection at false alarm probability equals 0.1 under SNR equals −10 dB and the number of secondary user (SU) equals 5.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper exploits the efficient performing of the Multiple Input Multiple Output (MIMO)-Alamouti scheme for spectrum sensing in cognitive radio (CR). Consequently, enhancement in the overall performance and the detection probability by using the MIMO-Alamouti scheme is achieved. Moreover, at low signal-to-noise ratio (SNR), the cooperative spectrum distinguishing algorithm among the different spectrum distinguishing techniques is employed to raise the probability of detection and also solving the hidden node problem. Matlab software is used to simulate the detection probability versus SNR for different schemes. Up to 50% enhancement in detection probability (Pd) as compared with the conventional technique under signal to noise ratio (SNR) equals −15 dB and false alarm probability (Pf) equals 0.1. As compared with the common spectrum sensing approach in case of the majority rule, at least 10% advance in the probability of detection at false alarm probability equals 0.1 under SNR equals −10 dB and the number of secondary user (SU) equals 5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用MIMO-Alamouti方案改进认知无线电频谱识别性能
本文研究了多输入多输出(MIMO)-Alamouti方案在认知无线电(CR)频谱感知中的高效执行。因此,使用MIMO-Alamouti方案可以提高整体性能和检测概率。此外,在低信噪比下,采用不同频谱识别技术之间的协同频谱识别算法,提高了检测概率,也解决了隐节点问题。利用Matlab软件对不同方案的检测概率与信噪比进行了仿真。在信噪比(SNR)为−15 dB,虚警概率(Pf)为0.1的情况下,检测概率(Pd)比传统技术提高50%。在信噪比为−10 dB、辅助用户数量为5时,在虚警概率为0.1的情况下,与采用多数原则的普通频谱感知方法相比,检测概率至少提高10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1