{"title":"Development of a Semi-Rigid Tendon Actuated Limb for Robotics Applications","authors":"Bekarys Nurtay, Tomiris Suranshy, M. Folgheraiter","doi":"10.1109/ICRAE50850.2020.9310905","DOIUrl":null,"url":null,"abstract":"This paper presents the design and modeling of a lightweight tendon actuated robotic limb. The mechanical structure consists of a sequence of four semi-rigid segments realized in thermoplastic polyurethane material and connected through torsional springs. This allows the limb to keep a straight position without the application of forces and facilitates the control of the limb while performing flexion and extension movements. A static model is presented to predict the tension of the tendons in order to reach a defined orientation. Simulations were conducted in a V-REP Python environment to demonstrate the controllability of the limb while performing simple movements and trajectories.","PeriodicalId":296832,"journal":{"name":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE50850.2020.9310905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design and modeling of a lightweight tendon actuated robotic limb. The mechanical structure consists of a sequence of four semi-rigid segments realized in thermoplastic polyurethane material and connected through torsional springs. This allows the limb to keep a straight position without the application of forces and facilitates the control of the limb while performing flexion and extension movements. A static model is presented to predict the tension of the tendons in order to reach a defined orientation. Simulations were conducted in a V-REP Python environment to demonstrate the controllability of the limb while performing simple movements and trajectories.