{"title":"Analysis and tolerancing of structured mid-spatial frequency errors in imaging systems","authors":"John M. Tamkin, T. Milster","doi":"10.1117/12.871013","DOIUrl":null,"url":null,"abstract":"Structured mid-spatial frequency surface errors on aspheric optics can create ghost images and reduced contrast. This reduction in performance is shown to be non-linear with surface height using Fourier methods without small signal or statistical approximations. Tolerancing MSF errors can use traditional MTF metrics, and derives peak-to-valley limits on MSF surface height components.","PeriodicalId":386109,"journal":{"name":"International Optical Design Conference","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Optical Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.871013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Structured mid-spatial frequency surface errors on aspheric optics can create ghost images and reduced contrast. This reduction in performance is shown to be non-linear with surface height using Fourier methods without small signal or statistical approximations. Tolerancing MSF errors can use traditional MTF metrics, and derives peak-to-valley limits on MSF surface height components.